scholarly journals Feline Immunodeficiency Virus Vif Localizes to the Nucleus

2000 ◽  
Vol 74 (6) ◽  
pp. 2533-2540 ◽  
Author(s):  
Udayan Chatterji ◽  
Chris K. Grant ◽  
John H. Elder

ABSTRACT Monoclonal antibodies prepared against recombinant Vif derived from the 34TF10 strain of feline immunodeficiency virus (FIV) were used to assess the expression and localization of Vif in virus-infected cells. Analyses by Western blotting and by immunoprecipitation from cells infected with FIV-34TF10 revealed the presence of a single 29-kDa species specific for virus-infected cells. Confirmation of antibody specificity was also performed by specific immunoprecipitation of in vitro-transcribed and -translated recombinant Vif. Localization experiments were also performed on virus-infected cells, using different fixation procedures. Results for methanol fixation protocols similar to those reported for localization of human immunodeficiency virus (HIV) Vif showed a predominant cytoplasmic localization for FIV Vif, very similar to localization of HIV type 1 Vif and virtually identical to the localization observed for the Gag antigens of the virus. However, with milder fixation procedures that used 2% formaldehyde at 4°C, FIV Vif was strongly evident in the nucleus. The localization was distinct from the nuclear localization noted with Rev and did not involve the nucleolus. Attempts to show colocalization or coprecipitation of Vif with Gag antigens were unsuccessful. In addition, Vif was not detected in purified FIV virions. The results are consistent with the notion that the primary role of Vif in virus infection initiates in the nucleus.

2002 ◽  
Vol 38 ◽  
pp. 113-127 ◽  
Author(s):  
Ben M Dunn

The peptidase of the HIV type 1 (HIV PR) is required for the replication of and further infection by the virus. A concerted effort has taken place in the past 15 years to understand the properties of this enzyme, as it serves as an excellent drug target for control of the virus. Owing to drug pressure, many mutations arise during turnover of the virus and some of these lead to resistance to the effects of the inhibitors. Recent advances in the understanding of the changes these mutations cause to the enzyme and its interaction with substrates and inhibitors have been described. In addition, studies of closely related retroviral enzymes from simian immunodeficiency virus, feline immunodeficiency virus and HIV-2 have expanded the structure-function paradigm. The role of the flexibility of ligands and of the enzyme in active-site interactions is discussed.


2002 ◽  
Vol 76 (3) ◽  
pp. 1015-1024 ◽  
Author(s):  
Barbara Müller ◽  
Tilo Patschinsky ◽  
Hans-Georg Kräusslich

ABSTRACT The Gag-derived protein p6 of human immunodeficiency virus type 1 (HIV-1) plays a crucial role in the release of virions from the membranes of infected cells. It is presumed that p6 and functionally related proteins from other viruses act as adapters, recruiting cellular factors to the budding site. This interaction is mediated by so-called late domains within the viral proteins. Previous studies had suggested that virus release from the plasma membrane shares elements with the cellular endocytosis machinery. Since protein phosphorylation is known to be a regulatory mechanism in these processes, we have investigated the phosphorylation of HIV-1 structural proteins. Here we show that p6 is the major phosphoprotein of HIV-1 particles. After metabolic labeling of infected cells with [ortho- 32P]phosphate, we found that phosphorylated p6 from infected cells and from virus particles consisted of several forms, suggesting differential phosphorylation at multiple sites. Apparently, phosphorylation occurred shortly before or after the release of p6 from Gag and involved only a minor fraction of the total virion-associated p6 molecules. Phosphoamino acid analysis indicated phosphorylation at Ser and Thr, as well as a trace of Tyr phosphorylation, supporting the conclusion that multiple phosphorylation events do occur. In vitro experiments using purified virus revealed that endogenous or exogenously added p6 was efficiently phosphorylated by virion-associated cellular kinase(s). Inhibition experiments suggested that a cyclin-dependent kinase or a related kinase, most likely ERK2, was involved in p6 phosphorylation by virion-associated enzymes.


2008 ◽  
Vol 18 (16) ◽  
pp. 4578-4580 ◽  
Author(s):  
Ryuichi Ueoka ◽  
Yuji Komizu ◽  
Yoko Matsumoto ◽  
Yu Zhong ◽  
Ritsuko Tanaka ◽  
...  

2005 ◽  
Vol 79 (21) ◽  
pp. 13579-13586 ◽  
Author(s):  
W. David Wick ◽  
Otto O. Yang ◽  
Lawrence Corey ◽  
Steven G. Self

ABSTRACT The antiviral role of CD8+ cytotoxic T lymphocytes (CTLs) in human immunodeficiency virus type 1 (HIV-1) infection is poorly understood. Specifically, the degree to which CTLs reduce viral replication by killing HIV-1-infected cells in vivo is not known. Here we employ mathematical models of the infection process and CTL action to estimate the rate that CTLs can kill HIV-1-infected cells from in vitro and in vivo data. Our estimates, which are surprisingly consistent considering the disparities between the two experimental systems, demonstrate that on average CTLs can kill from 0.7 to 3 infected target cells per day, with the variability in this figure due to epitope specificity or other factors. These results are compatible with the observed decline in viremia after primary infection being primarily a consequence of CTL activity and have interesting implications for vaccine design.


2010 ◽  
Vol 84 (8) ◽  
pp. 3935-3948 ◽  
Author(s):  
Bettina Stolp ◽  
Libin Abraham ◽  
Jochen M. Rudolph ◽  
Oliver T. Fackler

ABSTRACT Nef is an accessory protein and pathogenicity factor of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) which elevates virus replication in vivo. We recently described for HIV type 1SF2 (HIV-1SF2) the potent interference of Nef with T-lymphocyte chemotaxis via its association with the cellular kinase PAK2. Mechanistic analysis revealed that this interaction results in deregulation of the actin-severing factor cofilin and thus blocks the chemokine-mediated actin remodeling required for cell motility. However, the efficiency of PAK2 association is highly variable among Nef proteins from different lentiviruses, prompting us to evaluate the conservation of this actin-remodeling/cofilin-deregulating mechanism. Based on the analysis of a total of 17 HIV-1, HIV-2, and SIV Nef proteins, we report here that inhibition of chemokine-induced actin remodeling as well as inactivation of cofilin are strongly conserved activities of lentiviral Nef proteins. Of note, even for Nef variants that display only marginal PAK2 association in vitro, these activities require the integrity of a PAK2 recruitment motif and the presence of endogenous PAK2. Thus, reduced in vitro affinity to PAK2 does not indicate limited functionality of Nef-PAK2 complexes in intact HIV-1 host cells. These results establish hijacking of PAK2 for deregulation of cofilin and inhibition of triggered actin remodeling as a highly conserved function of lentiviral Nef proteins, supporting the notion that PAK2 association may be critical for Nef's activity in vivo.


2000 ◽  
Vol 74 (23) ◽  
pp. 10882-10891 ◽  
Author(s):  
Suryaram Gummuluru ◽  
C. Mathew Kinsey ◽  
Michael Emerman

ABSTRACT We have developed a rapid-turnover culture system where the life span of a human immunodeficiency virus type 1-infected cell is controlled by periodic addition of a cytotoxic agent, mitomycin C. These mitomycin C-exposed cells are cocultured with a constant number of uninfected cells as new targets for the virus. Passage of the virus-infected cells under these conditions led to the emergence of a viral variant that was able to replicate efficiently in this culture system. After biologic and molecular cloning, we were able to identify a single frameshift mutation in the vpu open reading frame that was sufficient for growth of the mutant virus in the rapid-turnover assay. This virus variant spread more efficiently by cell-to-cell transfer than the parental virus did. Electron micrographs of cells infected with the Δvpu virus revealed a large number of mature viral capsids attached to the plasma membrane. The presence of these mature virus particles on the cell surface led to enhanced fusion and formation of giant syncytia with uninfected cells. Enhanced cell-to-cell transfer of the Δvpu virus provides an explanation for the survival of this mutant virus in the rapid-turnover culture system. The in vitro rapid-turnover culture system is a good representation of the in vivo turnover kinetics of infected cells and their continual replacement by host lymphopoietic mechanisms.


PLoS ONE ◽  
2012 ◽  
Vol 7 (7) ◽  
pp. e39472 ◽  
Author(s):  
Ana Judith Perisé-Barrios ◽  
María Ángeles Muñoz-Fernandez ◽  
Marjorie Pion

Sign in / Sign up

Export Citation Format

Share Document