scholarly journals Nucleocapsid Incorporation into Parainfluenza Virus Is Regulated by Specific Interaction with Matrix Protein

2001 ◽  
Vol 75 (3) ◽  
pp. 1117-1123 ◽  
Author(s):  
Elizabeth C. Coronel ◽  
Toru Takimoto ◽  
K. Gopal Murti ◽  
Natalia Varich ◽  
Allen Portner

ABSTRACT The paramyxovirus nucleoproteins (NPs) encapsidate the genomic RNA into nucleocapsids, which are then incorporated into virus particles. We determined the protein-protein interaction between NP molecules and the molecular mechanism required for incorporating nucleocapsids into virions in two closely related viruses, human parainfluenza virus type 1 (hPIV1) and Sendai virus (SV). Expression of NP from cDNA resulted in in vivo nucleocapsid formation. Electron micrographs showed no significant difference in the morphological appearance of viral nucleocapsids obtained from lysates of transfected cells expressing SV or hPIVI NP cDNA. Coexpression of NP cDNAs from both viruses resulted in the formation of nucleocapsid composed of a mixture of NP molecules; thus, the NPs of both viruses contained regions that allowed the formation of mixed nucleocapsid. Mixed nucleocapsids were also detected in cells infected with SV and transfected with hPIV1 NP cDNA. However, when NP of SV was donated by infected virus and hPIV1 NP was from transfected cDNA, nucleocapsids composed of NPs solely from SV or solely from hPIVI were also detected. Although almost equal amounts of NP of the two viruses were found in the cytoplasm of cells infected with SV and transfected with hPIV1 NP cDNA, 90% of the NPs in the nucleocapsids of the progeny SV virions were from SV. Thus, nucleocapsids containing heterologous hPIV1 NPs were excluded during the assembly of progeny SV virions. Coexpression of hPIV1 NP and hPIV1 matrix protein (M) in SV-infected cells increased the uptake of nucleocapsids containing hPIV1 NP; thus, M appears to be responsible for the specific incorporation of the nucleocapsid into virions. Using SV-hPIV1 chimera NP cDNAs, we found that the C-terminal domain of the NP protein (amino acids 420 to 466) is responsible for the interaction with M.

2013 ◽  
Vol 94 (10) ◽  
pp. 2184-2190 ◽  
Author(s):  
Susanna K. P. Lau ◽  
Patrick C. Y. Woo ◽  
Ying Wu ◽  
Annette Y. P. Wong ◽  
Beatrice H. L. Wong ◽  
...  

We describe the discovery and characterization of a novel paramyxovirus, porcine parainfluenza virus 1 (PPIV-1), from swine. The virus was detected in 12 (3.1 %) of 386 nasopharyngeal and two (0.7 %) of 303 rectal swab samples from 386 deceased pigs by reverse transcription-PCR, with viral loads of up to 106 copies ml−1. Complete genome sequencing and phylogenetic analysis showed that PPIV-1 represented a novel paramyxovirus within the genus Respirovirus, being most closely related to human parainfluenza virus 1 (HPIV-1) and Sendai virus (SeV). In contrast to HPIV-1, PPIV-1 possessed a mRNA editing function in the phosphoprotein gene. Moreover, PPIV-1 was unique among respiroviruses in having two G residues instead of three to five G residues following the A6 run at the editing site. Nevertheless, PPIV-1, HPIV-1 and SeV share common genomic features and may belong to a separate group within the genus Respirovirus. The presence of PPIV-1 in mainly respiratory samples suggests a possible association with respiratory disease, similar to HPIV-1 and SeV.


2018 ◽  
Vol 92 (19) ◽  
Author(s):  
Takayuki Komatsu ◽  
Yukie Tanaka ◽  
Yoshinori Kitagawa ◽  
Naoki Koide ◽  
Yoshikazu Naiki ◽  
...  

ABSTRACT Inflammasomes play a key role in host innate immune responses to viral infection by caspase-1 (Casp-1) activation to facilitate interleukin-1β (IL-1β) secretion, which contributes to the host antiviral defense. The NLRP3 inflammasome consists of the cytoplasmic sensor molecule NLRP3, adaptor protein ASC, and effector protein pro-caspase-1 (pro-Casp-1). NLRP3 and ASC promote pro-Casp-1 cleavage, leading to IL-1β maturation and secretion. However, as a countermeasure, viral pathogens have evolved virulence factors to antagonize inflammasome pathways. Here we report that V gene knockout Sendai virus [SeV V(−)] induced markedly greater amounts of IL-1β than wild-type SeV in infected THP1 macrophages. Deficiency of NLRP3 in cells inhibited SeV V(−)-induced IL-1β secretion, indicating an essential role for NLRP3 in SeV V(−)-induced IL-1β activation. Moreover, SeV V protein inhibited the assembly of NLRP3 inflammasomes, including NLRP3-dependent ASC oligomerization, NLRP3-ASC association, NLRP3 self-oligomerization, and intermolecular interactions between NLRP3 molecules. Furthermore, a high correlation between the NLRP3-binding capacity of V protein and the ability to block inflammasome complex assembly was observed. Therefore, SeV V protein likely inhibits NLRP3 self-oligomerization by interacting with NLRP3 and inhibiting subsequent recruitment of ASC to block NLRP3-dependent ASC oligomerization, in turn blocking full activation of the NLRP3 inflammasome and thus blocking IL-1β secretion. Notably, the inhibitory action of SeV V protein on NLRP3 inflammasome activation is shared by other paramyxovirus V proteins, such as Nipah virus and human parainfluenza virus type 2. We thus reveal a mechanism by which paramyxovirus inhibits inflammatory responses by inhibiting NLRP3 inflammasome complex assembly and IL-1β activation. IMPORTANCE The present study demonstrates that the V protein of SeV, Nipah virus, and human parainfluenza virus type 2 interacts with NLRP3 to inhibit NLRP3 inflammasome activation, potentially suggesting a novel strategy by which viruses evade the host innate immune response. As all members of the Paramyxovirinae subfamily carry similar V genes, this new finding may also lead to identification of novel therapeutic targets for paramyxovirus infection and related diseases.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009908
Author(s):  
Yuki Kurebayashi ◽  
Shringkhala Bajimaya ◽  
Masahiro Watanabe ◽  
Nicholas Lim ◽  
Michael Lutz ◽  
...  

Human parainfluenza virus type 1 (hPIV1) and 3 (hPIV3) cause seasonal epidemics, but little is known about their interaction with human airway cells. In this study, we determined cytopathology, replication, and progeny virion release from human airway cells during long-term infection in vitro. Both viruses readily established persistent infection without causing significant cytopathic effects. However, assembly and release of hPIV1 rapidly declined in sharp contrast to hPIV3 due to impaired viral ribonucleocapsid (vRNP) trafficking and virus assembly. Transcriptomic analysis revealed that both viruses induced similar levels of type I and III IFNs. However, hPIV1 induced specific ISGs stronger than hPIV3, such as MX2, which bound to hPIV1 vRNPs in infected cells. In addition, hPIV1 but not hPIV3 suppressed genes involved in lipid biogenesis and hPIV1 infection resulted in ubiquitination and degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, a rate limiting enzyme in cholesterol biosynthesis. Consequently, formation of cholesterol-rich lipid rafts was impaired in hPIV1 infected cells. These results indicate that hPIV1 is capable of regulating cholesterol biogenesis, which likely together with ISGs contributes to establishment of a quiescent infection.


2021 ◽  
Author(s):  
Naoki Saka ◽  
Yusuke Matsumoto ◽  
Keisuke Ohta ◽  
Daniel Kolakofsky ◽  
Machiko Nishio

Paramyxovirus genomes, like that of human parainfluenza virus type 2 (hPIV2), are precisely a multiple of six nucleotides long (“rule of six”), in which each nucleoprotein subunit (NP) binds precisely 6 nucleotides. Ten residues of its RNA binding groove contact the genome RNA; but only one, Q202, directly contacts a nucleotide base. Mutation of NP Q202 leads to two phenotypes; the ability of the viral polymerase to replicate minigenomes with defective bipartite promoters where NP wt is inactive, and the inability to rescue rPIV2 carrying this point mutation by standard means. The absence a rPIV2 NP Q202A prevented further study of this latter phenotype. By extensive and repeated co-cultivation of transfected cells, a rPIV2 carrying this mutation was finally recovered, and this virus was apparently viable due to the presence of an additional NP mutation (I35L). Our results suggest that these two phenotypes are due to separate effects of the Q202 mutation, and that of the problematic rescue phenotype may be due to the inability of the transfected cell to incorporate viral nucleocapsids during virus budding. Importance Paramyxovirus genomes are contained within a non-covalent homopolymer of its nucleoprotein (NP) and form helical nucleocapsids (NC) whose 3’ ends contain the promoters for the initiation of viral RNA synthesis. This work suggests that these NC 3’ ends may play another role in the virus life cycle, namely via their specific interaction with virus modified cell membranes needed for the incorporation of viral NCs into budding virions.


2017 ◽  
Vol 21 (4) ◽  
pp. 538-547.e4 ◽  
Author(s):  
Binbin Ding ◽  
Linliang Zhang ◽  
Zhifei Li ◽  
Yi Zhong ◽  
Qiaopeng Tang ◽  
...  

2008 ◽  
Vol 82 (7) ◽  
pp. 3500-3508 ◽  
Author(s):  
Kristi Peters ◽  
Saurabh Chattopadhyay ◽  
Ganes C. Sen

ABSTRACT Here, we report that specific manipulations of the cellular response to virus infection can cause prevention of apoptosis and consequent establishment of persistent infection. Infection of several human cell lines with Sendai virus (SeV) or human parainfluenza virus 3, two prototypic paramyxoviruses, caused slow apoptosis, which was markedly accelerated upon blocking the action of phosphatidylinositol 3-kinases (PI3 kinases) in the infected cells. The observed apoptosis required viral gene expression and the action of the caspase 8 pathway. Although virus infection activated PI3 kinase, as indicated by AKT activation, its blockage did not inhibit JNK activation or IRF-3 activation. The action of neither the Jak-STAT pathway nor the NF-κB pathway was required for apoptosis. In contrast, IRF-3 activation was essential, although induction of the proapototic protein TRAIL by IRF-3 was not required. When IRF-3 was absent or its activation by the RIG-I pathway was blocked, SeV established persistent infection, as documented by viral protein production and infectious virus production. Introduction of IRF-3 in the persistently infected cells restored the cells' ability to undergo apoptosis. These results demonstrated that in our model system, IRF-3 controlled the fate of the SeV-infected cells by promoting apoptosis and preventing persistence.


2006 ◽  
Vol 17 (3) ◽  
pp. 1461-1471 ◽  
Author(s):  
Kai Yang ◽  
Hexin Shi ◽  
Rong Qi ◽  
Shaogang Sun ◽  
Yujie Tang ◽  
...  

Interferon regulatory factor 3 (IRF3) plays a crucial role in mediating cellular responses to virus intrusion. The protein kinase TBK1 is a key regulator inducing phosphorylation of IRF3. The regulatory mechanisms during IRF3 activation remain poorly characterized. In the present study, we have identified by yeast two-hybrid approach a specific interaction between IRF3 and chaperone heat-shock protein of 90 kDa (Hsp90). The C-terminal truncation mutant of Hsp90 is a strong dominant-negative inhibitor of IRF3 activation. Knockdown of endogenous Hsp90 by RNA interference attenuates IRF3 activation and its target gene expressions. Alternatively, Hsp90-specific inhibitor geldanamycin (GA) dramatically reduces expression of IRF3-regulated interferon-stimulated genes and abolishes the cytoplasm-to-nucleus translocation and DNA binding activity of IRF3 in Sendai virus-infected cells. Significantly, virus-induced IRF3 phosphorylation is blocked by GA, whereas GA does not affect the protein level of IRF3. In addition, TBK1 is found to be a client protein of Hsp90 in vivo. Treatment of 293 cells with GA interferes with the interaction of TBK1 and Hsp90, resulting in TBK1 destabilization and its subsequent proteasome-mediated degradation. Besides maintaining stability of TBK1, Hsp90 also forms a novel complex with TBK1 and IRF3, which brings TBK1 and IRF3 dynamically into proximity and facilitates signal transduction from TBK1 to IRF3. Our study uncovers an essential role of Hsp90 in the virus-induced activation of IRF3.


2002 ◽  
Vol 76 (16) ◽  
pp. 8101-8109 ◽  
Author(s):  
Achut G. Malur ◽  
Suresh K. Choudhary ◽  
Bishnu P. De ◽  
Amiya K. Banerjee

ABSTRACT The RNA polymerase complex of human parainfluenza virus type 3 (HPIV 3), a member of the family Paramyxoviridae, is composed of two virally encoded polypeptides: a multifunctional large protein (L, 255 kDa) and a phosphoprotein (P, 90 kDa). From extensive deduced amino acid sequence analyses of the cDNA clones of a number of L proteins of nonsegmented negative-strand RNA viruses, a cluster of high-homology sequence segments have been identified within the body of the L proteins. Here, we have focused on the NH2-terminal domain of HPIV 3 L protein that is also highly conserved. Following mutational analyses within this domain, we examined the ability of the mutant L proteins to (i) transcribe an HPIV 3 minireplicon, (ii) transcribe the viral RNA in vitro using the HPIV 3 nucleocapsid RNA template, and (iii) interact with HPIV 3 P protein. Our results demonstrate that the first 15 amino acids of the NH2-terminal domain spanning a highly conserved motif is directly involved in transcription of the genome RNA and in forming a functional complex with the P protein. Substitution of eight nonconserved amino acids within this domain by the corresponding Sendai virus L protein residues yielded mutants with variable transcriptional activities. However, one mutant in which all eight amino acids were replaced with the corresponding residues of Sendai virus L protein failed to both transcribe the minireplicon and interact with HPIV 3 P and the Sendai virus P protein. The possible functional significance of the NH2-terminal domain of paramyxovirus L protein is discussed.


2002 ◽  
Vol 30 (4) ◽  
pp. 401-405 ◽  
Author(s):  
B. Hallberg

14-3-3 proteins belong to a family of conserved molecules, which play a regulatory role and participate in signal transduction and checkpoint control pathways. 14-3-3 proteins bind phosphoserine-phosphorylated ligands, such as the Raf-1 kinase and Bad, through recognition of the phosphorylated consensus motif, RSXpSXP (where pS is phosphoserine). Recently, a phosphorylation-independent interaction has been reported to occur between 14-3-3 and a small number of proteins, for example the 43 kDa inositol polyphosphate 5-phosphatase, glycoprotein Ib, p75NTR-associated cell-death executor (NADE) and the bacterial ADP-ribosyltransferase toxin exoenzyme S (ExoS). It has been suggested that specific residues of 14-3-3 proteins are required for activation of the bacterial toxin ExoS. An unphosphorylated peptide derived from a phage display library, known as the R18 peptide, and a synthetic peptide derived from ExoS inhibit the interaction between ExoS and 14-3-3. In this report we identify the amino acid sequence on ExoS which is responsible for its specific interaction with 14-3-3, both in vitro and in vivo. In addition, we believe that this interaction is critical for the ADP-ribosylation of an endogenous target, Ras, by ExoS both in vitro and in vivo. Loss of the 14-3-3-binding site on ExoS results in an ExoS molecule that is unable to efficiently inactivate Ras and shows a reduced capacity to change the morphology of infected cells, together with reduced killing activity.


Sign in / Sign up

Export Citation Format

Share Document