scholarly journals Adenovirus Serotype 30 Fiber Does Not Mediate Transduction via the Coxsackie-Adenovirus Receptor

2002 ◽  
Vol 76 (2) ◽  
pp. 656-661 ◽  
Author(s):  
Lane K. Law ◽  
Beverly L. Davidson

ABSTRACT Prior work by members of our laboratory and others demonstrated that adenovirus serotype 30 (Ad30), a group D adenovirus, exhibited novel transduction characteristics compared to those of serotype 5 (Ad5, belonging to group C). While some serotype D adenoviruses bind to the coxsackie-adenovirus receptor (CAR), the ability of Ad30 fiber to bind CAR is unknown. We amplified and purified Ad30 and cloned the Ad30 fiber by overlap PCR. Alignment of Ad30 fiber with Ad3, Ad35, Ad5, Ad9, and Ad17 revealed that Ad30, like Ad9 and Ad17, has a shortened fiber sequence relative to that of Ad5. The knob region of fiber was 45% identical to that of the Ad5 knob regions. We made a chimeric recombinant virus (Ad5GFPf30) in which the Ad5 fiber (amino acids [aa]47 to 582) was replaced with Ad30 fiber sequences (aa 46 to 372), and CAR-mediated viral entry was determined on CAR-expressing Chinese hamster ovary (CHO) cells. While CAR expression significantly increased Ad5GFP-mediated transduction in CHO cells (from 1 to 36%), it did not enhance Ad5GFPf30 gene transfer. Binding of radiolabeled Ad5GFPf30 or Ad30 wild-type virus was also not improved by the expression of CAR. These results suggest that Ad30 fiber is distinct from Ad5, Ad9, and Ad17 fibers in its inability to direct transduction via CAR.

2009 ◽  
Vol 90 (7) ◽  
pp. 1600-1610 ◽  
Author(s):  
William C. Adams ◽  
Emily Bond ◽  
Menzo J. E. Havenga ◽  
Lennart Holterman ◽  
Jaap Goudsmit ◽  
...  

The coxsackievirus–adenovirus receptor (CAR) is the described primary receptor for adenovirus serotype 5 (Ad5), a common human pathogen that has been exploited as a viral vector for gene therapy and vaccination. This study showed that monocytes and dendritic cells (DCs), such as freshly isolated human blood myeloid DCs, plasmacytoid DCs and monocyte-derived DCs, are susceptible to recombinant Ad5 (rAd5) infection despite their lack of CAR expression. Langerhans cells and dermal DCs from skin expressed CAR, but blocking CAR only partly decreased rAd5 infection, together suggesting that other receptor pathways mediate viral entry of these cells. Lactoferrin (Lf), an abundant protein in many bodily fluids known for its antiviral and antibacterial properties, promoted rAd5 infection in all cell populations except plasmacytoid DCs using a CAR-independent process. Lf caused phenotypic differentiation of the DCs, but cell activation played only a minor role in the increase in infection frequencies. The C-type lectin receptor DC-SIGN facilitated viral entry of rAd5–Lf complexes and this was dependent on high-mannose-type N-linked glycans on Lf. These results suggest that Lf present at high levels at mucosal sites can facilitate rAd5 attachment and enhance infection of DCs. A better understanding of the tropism and receptor mechanisms of Ad5 may help explain Ad5 pathogenesis and guide the engineering of improved rAd vectors.


2003 ◽  
Vol 77 (17) ◽  
pp. 9183-9191 ◽  
Author(s):  
Anna Segerman ◽  
John P. Atkinson ◽  
Marko Marttila ◽  
Veronica Dennerquist ◽  
Göran Wadell ◽  
...  

ABSTRACT The 51 human adenovirus serotypes are divided into six species (A to F). Many adenoviruses use the coxsackie-adenovirus receptor (CAR) for attachment to host cells in vitro. Species B adenoviruses do not compete with CAR-binding serotypes for binding to host cells, and it has been suggested that species B adenoviruses use a receptor other than CAR. Species B adenoviruses mainly cause disease in the respiratory tract, the eyes, and in the urinary tract. Here we demonstrate that adenovirus type 11 (Ad11; of species B) binds to Chinese hamster ovary (CHO) cells transfected with CD46 (membrane cofactor protein)-cDNA at least 10 times more strongly than to CHO cells transfected with cDNAs encoding CAR or CD55 (decay accelerating factor). Nonpermissive CHO cells were rendered permissive to Ad11 infection upon transfection with CD46-cDNA. Soluble Ad11 fiber knob but not Ad7 or Ad5 knob inhibited binding of Ad11 virions to CD46-transfected cells, and anti-CD46 antibodies inhibited both binding of and infection by Ad11. From these results we conclude that CD46 is a cellular receptor for Ad11.


2002 ◽  
Vol 50 (4) ◽  
pp. 481-489 ◽  
Author(s):  
Cs. Jeney ◽  
Boglárka Banizs ◽  
Orsolya Dobay ◽  

The effects of bafilomycin A1 and of the reduced level of endosomal epsilon-COP (coatomer protein) on the infectivity of human adenovirus type 5 were investigated in Coxsackie adenovirus receptor- (CAR-) transfected Chinese hamster ovary (CHO) cells. The endosomal proton pump inhibitor bafilomycin A1 was able to cause only partial inhibition. Using ldlF cells (an epsilon-COP thermosensitive mutant CHO cell line) the reduction of epsilon-COP level also had partial inhibitory effect. Based on these results and comparing them to existing models of the adenovirus entry, we propose a refined model in which there are two pathways of adenoviral entry: the first one involves the epsilon-COP as the downstream effector of the acidification and can be blocked by bafilomycin A1 and the second one is a pH-independent pathway.


2005 ◽  
Vol 79 (22) ◽  
pp. 14429-14436 ◽  
Author(s):  
Marko Marttila ◽  
David Persson ◽  
Dan Gustafsson ◽  
M. Kathryn Liszewski ◽  
John P. Atkinson ◽  
...  

ABSTRACT The 51 human adenovirus serotypes are divided into six species (A to F). Adenovirus serotypes from all species except species B utilize the coxsackie-adenovirus receptor for attachment to host cells in vitro. Species B adenoviruses primarily cause ocular and respiratory tract infections, but certain serotypes are also associated with renal disease. We have previously demonstrated that adenovirus type 11 (species B) uses CD46 (membrane cofactor protein) as a cellular receptor instead of the coxsackie-adenovirus receptor (A. Segerman et al., J. Virol. 77:9183-9191, 2003). In the present study, we found that transfection with human CD46 cDNA rendered poorly permissive Chinese hamster ovary cells more permissive to infection by all species B adenovirus serotypes except adenovirus types 3 and 7. Moreover, rabbit antiserum against human CD46 blocked or efficiently inhibited all species B serotypes except adenovirus types 3 and 7 from infecting human A549 cells. We also sequenced the gene encoding the fiber protein of adenovirus type 50 (species B) and compared it with the corresponding amino acid sequences from selected serotypes, including all other serotypes of species B. From the results obtained, we conclude that CD46 is a major cellular receptor on A549 cells for all species B adenoviruses except types 3 and 7.


2006 ◽  
Vol 80 (23) ◽  
pp. 11833-11851 ◽  
Author(s):  
Jiansong Xie ◽  
Lilian Chiang ◽  
Janette Contreras ◽  
Kaijin Wu ◽  
Judy A. Garner ◽  
...  

ABSTRACT The established mechanism for infection of most cells with adenovirus serotype 5 (Ad5) involves fiber capsid protein binding to coxsackievirus-adenovirus receptor (CAR) at the cell surface, followed by penton base capsid protein binding to αv integrins, which triggers clathrin-mediated endocytosis of the virus. Here we determined the identity of the capsid proteins responsible for mediating Ad5 entry into the acinar epithelial cells of the lacrimal gland. Ad5 transduction of primary rabbit lacrimal acinar cells was inhibited by excess Ad5 fiber or knob (terminal region of the fiber) but not excess penton base. Investigation of the interactions of recombinant Ad5 penton base, fiber, and knob with lacrimal acini revealed that the penton base capsid protein remained surface associated, while the knob domain of the fiber capsid protein was rapidly internalized. Introduction of rabbit CAR-specific small interfering RNA (siRNA) into lacrimal acini under conditions that reduced intracellular CAR mRNA significantly inhibited Ad5 transduction, in contrast to a control (nonspecific) siRNA. Preincubation of Ad5 with excess heparin or pretreatment of acini with a heparinase cocktail each inhibited Ad5 transduction by a separate and apparently additive mechanism. Functional and imaging studies revealed that Ad5, fiber, and knob, but not penton base, stimulated macropinocytosis in acini and that inhibition of macropinocytosis significantly reduced Ad5 transduction of acini. However, inhibition of macropinocytosis did not reduce Ad5 uptake. We propose that internalization of Ad5 into lacrimal acini is through a novel fiber-dependent mechanism that includes CAR and heparan sulfate glycosaminoglycans and that the subsequent intracellular trafficking of Ad5 is enhanced by fiber-induced macropinocytosis.


2018 ◽  
Vol 2 (3) ◽  
pp. 433-442 ◽  
Author(s):  
Qiong Wang ◽  
Michael J. Betenbaugh

As a complex and common post-translational modification, N-linked glycosylation affects a recombinant glycoprotein's biological activity and efficacy. For example, the α1,6-fucosylation significantly affects antibody-dependent cellular cytotoxicity and α2,6-sialylation is critical for antibody anti-inflammatory activity. Terminal sialylation is important for a glycoprotein's circulatory half-life. Chinese hamster ovary (CHO) cells are currently the predominant recombinant protein production platform, and, in this review, the characteristics of CHO glycosylation are summarized. Moreover, recent and current metabolic engineering strategies for tailoring glycoprotein fucosylation and sialylation in CHO cells, intensely investigated in the past decades, are described. One approach for reducing α1,6-fucosylation is through inhibiting fucosyltransferase (FUT8) expression by knockdown and knockout methods. Another approach to modulate fucosylation is through inhibition of multiple genes in the fucosylation biosynthesis pathway or through chemical inhibitors. To modulate antibody sialylation of the fragment crystallizable region, expressions of sialyltransferase and galactotransferase individually or together with amino acid mutations can affect antibody glycoforms and further influence antibody effector functions. The inhibition of sialidase expression and chemical supplementations are also effective and complementary approaches to improve the sialylation levels on recombinant glycoproteins. The engineering of CHO cells or protein sequence to control glycoforms to produce more homogenous glycans is an emerging topic. For modulating the glycosylation metabolic pathways, the interplay of multiple glyco-gene knockouts and knockins and the combination of multiple approaches, including genetic manipulation, protein engineering and chemical supplementation, are detailed in order to achieve specific glycan profiles on recombinant glycoproteins for superior biological function and effectiveness.


Sign in / Sign up

Export Citation Format

Share Document