scholarly journals Distinct Roles of Cellular Lck and p80 Proteins in Herpesvirus Saimiri Tip Function on Lipid Rafts

2003 ◽  
Vol 77 (16) ◽  
pp. 9041-9051 ◽  
Author(s):  
Junsoo Park ◽  
Nam-Hyuk Cho ◽  
Joong-Kook Choi ◽  
Pinghui Feng ◽  
Joonho Choe ◽  
...  

ABSTRACT Lipid rafts are proposed to function as platforms for both receptor signaling and trafficking. Following interaction with antigenic peptides, the T-cell receptor (TCR) rapidly translocates to lipid rafts, where it transmits signals and subsequently undergoes endocytosis. The Tip protein of herpesvirus saimiri (HVS), which is a T-lymphotropic tumor virus, interacts with cellular Lck tyrosine kinase and p80, a WD domain-containing endosomal protein. Interaction of Tip with p80 induces enlarged vesicles and recruits Lck and TCR complex into these vesicles for trafficking. We report here that Tip is constitutively present in lipid rafts and that Tip interaction with p80 but not with Lck is necessary for its efficient localization in lipid rafts. The Tip-Lck interaction was required for recruitment of the TCR complex to lipid rafts, and the Tip-p80 interaction was critical for the aggregation and internalization of lipid rafts. These results suggest the potential mechanism for Tip-mediated TCR downregulation: Tip interacts with Lck to recruit TCR complex to lipid rafts, and it subsequently interacts with p80 to initiate the aggregation and internalization of the lipid raft domain and thereby downregulate the TCR complex. Thus, the signaling and targeting functions of HVS Tip rely on two functionally and genetically separable mechanisms that independently target cellular Lck tyrosine kinase and p80 endosomal protein.

2006 ◽  
Vol 80 (1) ◽  
pp. 108-118 ◽  
Author(s):  
Nam-Hyuk Cho ◽  
Dior Kingston ◽  
Heesoon Chang ◽  
Eun-Kyung Kwon ◽  
Jo-Min Kim ◽  
...  

ABSTRACT Lipid rafts are membrane microdomains that are proposed to function as platforms for both receptor signaling and trafficking. Our previous studies have demonstrated that Tip of herpesvirus saimiri (HVS), which is a T-lymphotropic tumor virus, is constitutively targeted to lipid rafts and interacts with cellular Lck tyrosine kinase and p80 WD repeat-containing endosomal protein. Through the interactions with Lck and p80, HVS Tip modulates diverse T-cell functions, which leads to the downregulation of T-cell receptor (TCR) and CD4 coreceptor surface expression, the inhibition of TCR signal transduction, and the activation of STAT3 transcription factor. In this study, we investigated the functional significance of Tip association with lipid rafts. We found that Tip expression remarkably increased lipid raft fractions in human T cells by enhancing the recruitment of lipid raft-resident proteins. Genetic analysis showed that the carboxyl-terminal transmembrane, but not p80 and Lck interaction, of Tip was required for the lipid raft localization and that lipid raft localization of Tip was necessary for the efficient downregulation of TCR and CD4 surface expression. Correlated with this, treatment with Filipin III, a lipid raft-disrupting agent, effectively reversed the downregulation of CD3 and CD4 surface expression induced by Tip. On the other hand, Tip mutants that were no longer present in lipid rafts were still capable of inhibiting TCR signaling and activating STAT3 transcription factor activity as efficiently as wild-type (wt) Tip. These results indicate that the association of Tip with lipid rafts is essential for the downregulation of TCR and CD4 surface expression but not for the inhibition of TCR signal transduction and the activation of STAT3 transcription factor. These results also suggest that the signaling and targeting activities of HVS Tip rely on functionally and genetically separable mechanisms, which may independently modulate T-cell function for viral persistence or pathogenesis.


2004 ◽  
Vol 200 (5) ◽  
pp. 681-687 ◽  
Author(s):  
Nam-Hyuk Cho ◽  
Pinghui Feng ◽  
Sun-Hwa Lee ◽  
Bok-Soo Lee ◽  
Xiaozhen Liang ◽  
...  

T cells play a central role in orchestrating immunity against pathogens, particularly viruses. Thus, impairing T cell activation is an important strategy employed by viruses to escape host immune control. The tyrosine kinase–interacting protein (Tip) of the T lymphotropic Herpesvirus saimiri (HVS) is constitutively present in lipid rafts and interacts with cellular Lck tyrosine kinase and p80 endosomal protein. Here we demonstrate that, due to the sequestration of Lck by HVS Tip, T cell receptor (TCR) stimulation fails to activate ZAP70 tyrosine kinase and to initiate downstream signaling events. TCR ζ chains in Tip-expressing T cells were initially phosphorylated to recruit ZAP70 molecule upon TCR stimulation, but the recruited ZAP70 kinase was not subsequently phosphorylated, resulting in TCR complexes that were stably associated with inactive ZAP70 kinase. Consequently, Tip expression not only markedly inhibited TCR-mediated intracellular signal transduction but also blocked TCR engagement with major histocompatibility complexes on the antigen-presenting cells and immunological synapse formation. These results demonstrate that a lymphotropic herpesvirus has evolved a novel mechanism to deregulate T cell activation to disarm host immune surveillance. This process contributes to the establishment and maintenance of viral latency.


2010 ◽  
Vol 30 (14) ◽  
pp. 3421-3429 ◽  
Author(s):  
Akiko Hashimoto-Tane ◽  
Tadashi Yokosuka ◽  
Chitose Ishihara ◽  
Machie Sakuma ◽  
Wakana Kobayashi ◽  
...  

ABSTRACT We studied the function of lipid rafts in generation and signaling of T-cell receptor microclusters (TCR-MCs) and central supramolecular activation clusters (cSMACs) at immunological synapse (IS). It has been suggested that lipid raft accumulation creates a platform for recruitment of signaling molecules upon T-cell activation. However, several lipid raft probes did not accumulate at TCR-MCs or cSMACs even with costimulation and the fluorescence resonance energy transfer (FRET) between TCR or LAT and lipid raft probes was not induced at TCR-MCs under the condition of positive induction of FRET between CD3ζ and ZAP-70. The analysis of LAT mutants revealed that raft association is essential for the membrane localization but dispensable for TCR-MC formation. Careful analysis of the accumulation of raft probes in the cell interface revealed that their accumulation occurred after cSMAC formation, probably due to membrane ruffling and/or endocytosis. These results suggest that lipid rafts control protein translocation to the membrane but are not involved in the clustering of raft-associated molecules and therefore that the lipid rafts do not serve as a platform for T-cell activation.


2009 ◽  
Vol 423 (3) ◽  
pp. 353-361 ◽  
Author(s):  
Kurt H. Piepenbrink ◽  
Oleg Y. Borbulevych ◽  
Ruth F. Sommese ◽  
John Clemens ◽  
Kathryn M. Armstrong ◽  
...  

TCR (T-cell receptor) recognition of antigenic peptides bound and presented by MHC (major histocompatibility complex) molecules forms the basis of the cellular immune response to pathogens and cancer. TCRs bind peptide–MHC complexes weakly and with fast kinetics, features which have hindered detailed biophysical studies of these interactions. Modified peptides resulting in enhanced TCR binding could help overcome these challenges. Furthermore, there is considerable interest in using modified peptides with enhanced TCR binding as the basis for clinical vaccines. In the present study, we examined how fluorine substitutions in an antigenic peptide can selectively impact TCR recognition. Using a structure-guided design approach, we found that fluorination of the Tax peptide [HTLV (human T-cell lymphotropic virus)-1 Tax11-19] enhanced binding by the Tax-specific TCR A6, yet weakened binding by the Tax-specific TCR B7. The changes in affinity were consistent with crystallographic structures and fluorine chemistry, and with the A6 TCR independent of other substitutions in the interface. Peptide fluorination thus provides a means to selectively modulate TCR binding affinity without significantly perturbing peptide composition or structure. Lastly, we probed the mechanism of fluorine's effect on TCR binding and we conclude that our results were most consistent with a ‘polar hydrophobicity’ mechanism, rather than a purely hydrophobic- or electrostatic-based mechanism. This finding should have an impact on other attempts to alter molecular recognition with fluorine.


Blood ◽  
2006 ◽  
Vol 108 (10) ◽  
pp. 3352-3359 ◽  
Author(s):  
Claire Abbal ◽  
Martine Lambelet ◽  
Debora Bertaggia ◽  
Carole Gerbex ◽  
Manuel Martinez ◽  
...  

Abstract Selectins and their ligand P-selectin glycoprotein ligand-1 (PSGL-1) mediate leukocyte rolling along inflamed vessels. Cell rolling is modulated by selectin interactions with their ligands and by topographic requirements including L-selectin and PSGL-1 clustering on tips of leukocyte microvilli. Lipid rafts are cell membrane microdomains reported to function as signaling platforms. Here, we show that disruption of leukocyte lipid rafts with cholesterol chelating agents depleted raft-associated PSGL-1 and L-selectin and strongly reduced L-, P-, and E-selectin–dependent rolling. Cholesterol repletion reversed inhibition of cell rolling. Importantly, leukocyte rolling on P-selectin induced the recruitment of spleen tyrosine kinase (Syk), a tyrosine kinase associated to lipid raft PSGL-1. Furthermore, inhibition of Syk activity or expression, with pharmacologic inhibitors or by RNA interference, strongly reduced leukocyte rolling on P-selectin, but not on E-selectin or PSGL-1. These observations identify novel regulatory mechanisms of leukocyte rolling on selectins with a strong dependency on lipid raft integrity and Syk activity.


1992 ◽  
Vol 12 (12) ◽  
pp. 5438-5446
Author(s):  
L K Timson Gauen ◽  
A N Kong ◽  
L E Samelson ◽  
A S Shaw

Several lines of evidence link the protein tyrosine kinase p59fyn to the T-cell receptor. The molecular basis of this interaction has not been established. Here we show that the tyrosine kinase p59fyn can associate with chimeric proteins that contain the cytoplasmic domains of CD3 epsilon, gamma, zeta (zeta), and eta. Mutational analysis of the zeta cytoplasmic domain demonstrated that the membrane-proximal 41 residues of zeta are sufficient for p59fyn binding and that at least two p59fyn binding domains are present. The association of p59fyn with the zeta chain was specific, as two closely related Src family protein tyrosine kinases, p60src and p56lck, did not associate with a chimeric protein that contained the cytoplasmic domain of zeta. Mutational analysis of p59fyn revealed that a 10-amino-acid sequence in the unique amino-terminal domain of p59fyn was responsible for the association with zeta. These findings support evidence that p59fyn is functionally and structurally linked to the T-cell receptor. More importantly, these studies support a critical role for the unique amino-terminal domains of Src family kinases in the coupling of tyrosine kinases to the signalling pathways of cell surface receptors.


2020 ◽  
Vol 295 (8) ◽  
pp. 2239-2247 ◽  
Author(s):  
Jeoung-Eun Park ◽  
David D. Brand ◽  
Edward F. Rosloniec ◽  
Ae-Kyung Yi ◽  
John M. Stuart ◽  
...  

Multiple observations implicate T-cell dysregulation as a central event in the pathogenesis of rheumatoid arthritis. Here, we investigated mechanisms for suppressing T-cell activation via the inhibitory receptor leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1). To determine how LAIR-1 affects T-cell receptor (TCR) signaling, we compared 1) T cells from LAIR-1–sufficient and –deficient mice, 2) Jurkat cells expressing either LAIR-1 mutants or C-terminal Src kinase (CSK) mutants, and 3) T cells from mice that contain a CSK transgene susceptible to chemical inhibition. Our results indicated that LAIR-1 engagement by collagen or by complement C1q (C1Q, which contains a collagen-like domain) inhibits TCR signaling by decreasing the phosphorylation of key components in the canonical T-cell signaling pathway, including LCK proto-oncogene SRC family tyrosine kinase (LCK), LYN proto-oncogene SRC family tyrosine kinase (LYN), ζ chain of T-cell receptor–associated protein kinase 70 (ZAP-70), and three mitogen-activated protein kinases (extracellular signal–regulated kinase, c-Jun N-terminal kinase 1/2, and p38). The intracellular region of LAIR-1 contains two immunoreceptor tyrosine-based inhibition motifs that are both phosphorylated by LAIR-1 activation, and immunoprecipitation experiments revealed that Tyr-251 in LAIR-1 binds CSK. Using CRISPR/Cas9-mediated genome editing, we demonstrate that CSK is essential for the LAIR-1–induced inhibition of the human TCR signal transduction. T cells from mice that expressed a PP1 analog–sensitive form of CSK (CskAS) corroborated these findings, and we also found that Tyr-251 is critical for LAIR-1's inhibitory function. We propose that LAIR-1 activation may be a strategy for controlling inflammation and may offer a potential therapeutic approach for managing autoimmune diseases.


Sign in / Sign up

Export Citation Format

Share Document