scholarly journals Autographa californica Nucleopolyhedrovirus orf69 Encodes an RNA Cap (Nucleoside-2′-O)-Methyltransferase

2003 ◽  
Vol 77 (6) ◽  
pp. 3430-3440 ◽  
Author(s):  
Xiaofeng Wu ◽  
Linda A. Guarino

ABSTRACT The AcNPV orf69 gene encodes a protein that contains an S-adenosylmethionine (AdoMet)-dependent methyltransferase signature motif. More significantly, ORF69 shows high conservation at residues diagnostic for (nucleoside 2′-O)-methyltransferase activity. To analyze the function of this protein, which was renamed MTase1, it was overexpressed in Escherichia coli and purified to homogeneity. Photo cross-linking experiments showed that MTase1 bound AdoMet, and functional assays demonstrated cap 0-dependent methyltransferase activity. In vivo expression assays in insect cells showed that MTase1 was synthesized during the late phase of infection and that its expression was dependent on viral DNA replication. Primer extension analysis identified a late promoter motif, ATAAG, at the transcription start site. A mutant virus was constructed by inserting the lacZ gene into the coding region of mtase1. Immunoblot analysis confirmed that MTase1 was not synthesized in these cells, and single-step growth curves revealed that the rate of virus replication in tissue culture was not affected by the absence of MTase1.

2002 ◽  
Vol 76 (23) ◽  
pp. 12032-12043 ◽  
Author(s):  
Linda A. Guarino ◽  
Toni-Ann Mistretta ◽  
Wen Dong

ABSTRACT The baculovirus lef-12 (orf41) gene is required for transient expression of baculovirus late genes. To analyze the role of LEF-12 in the context of infected cells, two mutant viruses were constructed. Both mutants were viable in Trichoplusia ni High 5 and Spodoptera frugiperda Sf9 cells. Single-step growth curves, however, indicated that virus yields were reduced approximately fivefold in the absence of LEF-12. Pulse-labeling of infected cells revealed that LEF-12 mutant viruses entered the late phase and synthesized late proteins at levels equivalent to or only twofold lower than those of wild-type virus-infected cells. Western blot analyses confirmed that LEF-12 was not synthesized in cells infected with mutant virus. In wild-type virus-infected cells, LEF-12 was not detected until 18 h postinfection, and accumulation of LEF-12 peaked at 24 to 36 h postinfection. Primer extension mapping revealed that lef-12 mRNA was synthesized by 12 h postinfection and peaked between 18 and 24 h postinfection. Furthermore, synthesis of lef-12 mRNA and LEF-12 protein were inhibited by the addition of aphidicolin, indicating that lef-12 is expressed after DNA replication.


Author(s):  
Xiaohui Zou ◽  
Yejing Rong ◽  
Xiaojuan Guo ◽  
Wenzhe Hou ◽  
Bingyu Yan ◽  
...  

Fibre is the viral protein that mediates the attachment and infection of adenovirus to the host cell. Fowl adenovirus 4 (FAdV-4) possesses two different fibre trimers on each penton capsomere, and roles of the separate fibres remain elusive. Here, we attempted to investigate the function of FAdV-4 fibres by using reverse genetics approaches. Adenoviral plasmids carrying fiber1 or fiber2 mutant genes were constructed and used to transfect chicken LMH cells. Fiber1-mutated recombinant virus could not be rescued. Such defective phenotype was complemented when a fiber1-bearing helper plasmid was included for co-transfection. The infection of fiber-intact FAdV-4 (FAdV4-GFP) to LMH cells could be blocked with purified fiber1 knob protein in a dose-dependent manner, while purifed fiber2 knob had no such function. On the contrary, fiber2-mutated FAdV-4, FAdV4XF2-GFP, was successfully rescued. The results of one-step growth curves showed that proliferative capacity of FAdV4XF2-GFP was 10 times lower than that of the control FAdV4-GFP. FAdV4XF2-GFP also caused fewer deaths of infected chicken embryos than FAdV4-GFP did, which resulted from poorer virus replication in vivo. These data illustrated that fiber1 mediated virus adsorption and was essential for FAdV-4, while fiber2 was dispensable although it significantly contributed to the virulence.


2015 ◽  
Vol 89 (21) ◽  
pp. 11107-11115 ◽  
Author(s):  
Nora Schmidt ◽  
Thomas Hennig ◽  
Remigiusz A. Serwa ◽  
Magda Marchetti ◽  
Peter O'Hare

ABSTRACTViruses modulate cellular processes and metabolism in diverse ways, but these are almost universally studied in the infected cell itself. Here, we study spatial organization of DNA synthesis during multiround transmission of herpes simplex virus (HSV) using pulse-labeling with ethynyl nucleotides and cycloaddition of azide fluorophores. We report a hitherto unknown and unexpected outcome of virus-host interaction. Consistent with the current understanding of the single-step growth cycle, HSV suppresses host DNA synthesis and promotes viral DNA synthesis in spatially segregated compartments within the cell. In striking contrast, during progressive rounds of infection initiated at a single cell, we observe that infection induces a clear and pronounced stimulation of cellular DNA replication in remote uninfected cells. This induced DNA synthesis was observed in hundreds of uninfected cells at the extended border, outside the perimeter of the progressing infection. Moreover, using pulse-chase analysis, we show that this activation is maintained, resulting in a propagating wave of host DNA synthesis continually in advance of infection. As the virus reaches and infects these activated cells, host DNA synthesis is then shut off and replaced with virus DNA synthesis. Using nonpropagating viruses or conditioned medium, we demonstrate a paracrine effector of uninfected cell DNA synthesis in remote cells continually in advance of infection. These findings have significant implications, likely with broad applicability, for our understanding of the ways in which virus infection manipulates cell processes not only in the infected cell itself but also now in remote uninfected cells, as well as of mechanisms governing host DNA synthesis.IMPORTANCEWe show that during infection initiated by a single particle with progressive cell-cell virus transmission (i.e., the normal situation), HSV induces host DNA synthesis in uninfected cells, mediated by a virus-induced paracrine effector. The field has had no conception that this process occurs, and the work changes our interpretation of virus-host interaction during advancing infection and has implications for understanding controls of host DNA synthesis. Our findings demonstrate the utility of chemical biology techniques in analysis of infection processes, reveal distinct processes when infection is examined in multiround transmission versus single-step growth curves, and reveal a hitherto-unknown process in virus infection, likely relevant for other viruses (and other infectious agents) and for remote signaling of other processes, including transcription and protein synthesis.


BIO-PROTOCOL ◽  
2019 ◽  
Vol 9 (23) ◽  
Author(s):  
Linda Grosche ◽  
Katinka Döhner ◽  
Alexandra Düthorn ◽  
Ana Hickford-Martinez ◽  
Alexander Steinkasserer ◽  
...  

1999 ◽  
Vol 45 (1) ◽  
pp. 92-96 ◽  
Author(s):  
Sangita Mediratta ◽  
Karim Essani

The growth kinetics of tanapox virus in owl monkey kidney cells was elucidated by single-step growth curves at multiplicities of 10, 1.0, and 0.1 plaque forming units (pfu) per cell at 37 and 33°C. Virus replicated equally well at both temperatures and produced a cytopathic effect that was characterized by densely packed rounded cells with retrogressed monolayer and granular vacuolated cytoplasm. Single-step growth curves revealed that the eclipse period varied from 24 h postinfection (hpi) at a multiplicity of infection of 10 pfu/cell to 48 hpi at 0.1 pfu/cell. The length of the latent period also varied from 36 hpi at 10 pfu/cell to 48 hpi at 0.1 pfu/cell. The intracellular virus, extracellular virus, and total virus titers reached their maximums relatively early at 10 pfu/cell as compared with 0.1 pfu/cell. About 78% of the mature progeny virion is retained intracellularly at 10 pfu/cell at 96 hpi. We conclude that tanapox virus replication is similar to other poxviruses, but the replication cycle is longer when compared with vaccinia virus.Key words: tanapox virus, single-step growth curve, eclipse period, latent period.


2004 ◽  
Vol 85 (4) ◽  
pp. 821-831 ◽  
Author(s):  
Giles P. Saville ◽  
Alexandra L. Patmanidi ◽  
Robert D. Possee ◽  
Linda A. King

Infection of insect larvae with Autographa californica nucleopolyhedrovirus (AcMNPV) results in the liquefaction of the host, a process involving the action of virus-encoded chitinase and cathepsin gene products. Chitinase is localized in the endoplasmic reticulum (ER) during infection because of the presence of a C-terminal ER retrieval motif (KDEL). In this study, the KDEL coding region was removed from the chitinase gene so that expression of the modified chitinase remained under the control of its own gene promoter, at its native locus. The deletion of KDEL resulted in the redistribution of chitinase within the cell during virus infection. Chitinase lacking the KDEL motif was detectable at the plasma membrane and was also evident in the culture medium of virus-infected cells from as early as 12 h post-infection (p.i.). Secretion of chitinase from the cell continued up to 72 h p.i., until cytolysis. The biological activity of the recombinant virus in Trichoplusia ni larvae was enhanced, with a significant reduction in the lethal dose and lethal time associated with infection. Furthermore, a reduction in feeding damage caused by infected larvae was observed compared to AcMNPV-infected individuals.


2007 ◽  
Vol 88 (3) ◽  
pp. 895-902 ◽  
Author(s):  
G. Haqshenas ◽  
X. Dong ◽  
H. Netter ◽  
J. Torresi ◽  
E. J. Gowans

Two GB virus B (GBV-B) chimeric genomes, GBV-HVR and GBV-HVRh (with a hinge), containing the coding region of the immunodominant hypervariable region 1 (HVR1) of the E2 envelope protein of Hepatitis C virus (HCV) were constructed. Immunoblot analysis confirmed that HVR1 was anchored to the GBV-B E2 protein. To investigate the replication competence and in vivo stability of in vitro-generated chimeric RNA transcripts, two naïve marmosets were inoculated intrahepatically with the transcripts. The GBV-HVR chimeric genome was detectable for 2 weeks post-inoculation (p.i.), whereas GBV-HVRh reverted to wild type 1 week p.i. Sequencing analysis of the HVR1 and flanking regions from GBV-HVR RNA isolated from marmoset serum demonstrated that the HVR1 insert remained unaltered in the GBV-HVR chimera for 2 weeks. Inoculation of a naïve marmoset with serum collected at 1 week p.i. also resulted in viraemia and confirmed that the serum contained infectious particles. All animals cleared the infection by 3 weeks p.i. and remained negative for the remaining weeks. The chimera may prove useful for the in vivo examination of any HCV HVR1-based vaccine candidates.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1272
Author(s):  
Alexander Leacy ◽  
Éva Nagy ◽  
Phuc H. Pham ◽  
Leonardo Susta

Aquatic bird bornavirus 1 (ABBV-1) is associated with chronic meningoencephalitis and ganglioneuritis. Although waterfowl species act as the natural host of ABBV-1, the virus has been sporadically isolated from other avian species, showing the potential for a broad host range. To evaluate the host restriction of ABBV-1, and its potential to infect commercial poultry species, we assessed the ability of ABBV-1 to replicate in cells and embryos of different avian species. ABBV-1 replication was measured using multi- and single-step growth curves in primary embryo fibroblasts of chicken, duck, and goose. Embryonated chicken and duck eggs were infected through either the yolk sac or chorioallantoic cavity, and virus replication was assessed by immunohistochemistry and RT-qPCR in embryonic tissues harvested at two time points after infection. Multi-step growth curves showed that ABBV-1 replicated and spread in goose and duck embryo fibroblasts, establishing a population of persistently infected cells, while it was unable to do so in chicken fibroblasts. Single-step growth curves showed that cells from all three species could be infected; however, persistence was only established in goose and duck fibroblasts. In ovo inoculation yielded no detectable viral replication or lesion in tissues. Data indicate that although chicken, duck, and goose embryo fibroblasts can be infected with ABBV-1, a persistent infection is more easily established in duck and goose cells. Therefore, ABBV-1 may be able to infect chickens in vivo, albeit inefficiently. Additionally, our data indicate that an in ovo model is inadequate to investigating ABBV-1 host restriction and pathogenesis.


2018 ◽  
Vol 69 (8) ◽  
pp. 2295-2299
Author(s):  
Elena Ionescu ◽  
Tanta Verona Iordache ◽  
Carmen Elena Tebrencu ◽  
Ruxandra Mihaela Cretu ◽  
Ana Mihaela Florea ◽  
...  

St. John s Wort (SJW) or Hypericum perforatum L. is a therapeutic plant highly used in pharmacology. Recent in vivo anti-cancer action of naphtodianthrones (NTs) has extended the research related to enrichment methodologies of SJW phyto-extracts. Therefore, the presented study pursuits the optimization of single-step extraction methodologies to obtain NTs-rich extracts from SJW.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rajiv Sharma ◽  
Daniel P. Dever ◽  
Ciaran M. Lee ◽  
Armon Azizi ◽  
Yidan Pan ◽  
...  

AbstractTargeted DNA correction of disease-causing mutations in hematopoietic stem and progenitor cells (HSPCs) may enable the treatment of genetic diseases of the blood and immune system. It is now possible to correct mutations at high frequencies in HSPCs by combining CRISPR/Cas9 with homologous DNA donors. Because of the precision of gene correction, these approaches preclude clonal tracking of gene-targeted HSPCs. Here, we describe Tracking Recombination Alleles in Clonal Engraftment using sequencing (TRACE-Seq), a methodology that utilizes barcoded AAV6 donor template libraries, carrying in-frame silent mutations or semi-randomized nucleotides outside the coding region, to track the in vivo lineage contribution of gene-targeted HSPC clones. By targeting the HBB gene with an AAV6 donor template library consisting of ~20,000 possible unique exon 1 in-frame silent mutations, we track the hematopoietic reconstitution of HBB targeted myeloid-skewed, lymphoid-skewed, and balanced multi-lineage repopulating human HSPC clones in mice. We anticipate this methodology could potentially be used for HSPC clonal tracking of Cas9 RNP and AAV6-mediated gene targeting outcomes in translational and basic research settings.


Sign in / Sign up

Export Citation Format

Share Document