scholarly journals Change of Tropism of SL3-2 Murine Leukemia Virus, Using Random Mutational Libraries

2004 ◽  
Vol 78 (17) ◽  
pp. 9343-9351 ◽  
Author(s):  
Shervin Bahrami ◽  
Mogens Duch ◽  
Finn Skou Pedersen

ABSTRACT SL3-2 is a polytropic murine leukemia virus with a limited species tropism. We cloned the envelope gene of this virus, inserted it into a bicistronic vector, and found that the envelope protein differs from other, similar envelope proteins that also utilize the polytropic receptor (Xpr1) in that it is severely impaired in mediating infection of human and mink cells. We found that two adjacent amino acid mutations (G212R and I213T), located in a previously functionally uncharacterized segment of the surface subunit, are responsible for the restricted tropism of the SL3-2 wild-type envelope. By selection from a two-codon library, several hydrophobic amino acids at these positions were found to enable the SL3-2 envelope to infect human TE 671 cells. In particular, an M212/V213 mutant had a titer at least 6 orders of magnitude higher than that of the wild-type envelope for human TE 671 cells and infected human, mink, and murine cells with equal efficiencies. Notably, these two amino acids are not found at homologous positions in known murine leukemia virus isolates. Functional analysis and library selection were done on the basis of sequence and tropism analyses of the SL3-2 envelope gene. Similar approaches may be valuable in the design and optimization of retroviral envelopes with altered tropisms for biotechnological purposes.

2003 ◽  
Vol 77 (12) ◽  
pp. 7058-7066 ◽  
Author(s):  
Sara Rasmussen Cheslock ◽  
Dexter T. K. Poon ◽  
William Fu ◽  
Terence D. Rhodes ◽  
Louis E. Henderson ◽  
...  

ABSTRACT We have identified a region near the C terminus of capsid (CA) of murine leukemia virus (MLV) that contains many charged residues. This motif is conserved in various lengths in most MLV-like viruses. One exception is that spleen necrosis virus (SNV) does not contain a well-defined domain of charged residues. When 33 amino acids of the MLV motif were deleted to mimic SNV CA, the resulting mutant produced drastically reduced amounts of virions and the virions were noninfectious. Furthermore, these viruses had abnormal sizes, often contained punctate structures resembling those in the cell cytoplasm, and packaged both ribosomal and viral RNA. When 11 or 15 amino acids were deleted to modify the MLV CA to resemble those from other gammaretroviruses, the deletion mutants produced virions at levels comparable to those of the wild-type virus and were able to complete one round of virus replication without detectable defects. We generated 10 more mutants that displayed either the wild-type or mutant phenotype. The distribution of the wild-type or mutant phenotype did not directly correlate with the number of amino acids deleted, suggesting that the function of the motif is determined not simply by its length but also by its structure. Structural modeling of the wild-type and mutant proteins suggested that this region forms α-helices; thus, we termed this motif the “charged assembly helix.” This is the first description of the charged assembly helix motif in MLV CA and demonstration of its role in virus budding and assembly.


1999 ◽  
Vol 73 (3) ◽  
pp. 2434-2441 ◽  
Author(s):  
Christine Bonzon ◽  
Hung Fan

ABSTRACT Moloney murine leukemia virus (M-MuLV) is a replication-competent, simple retrovirus that induces T-cell lymphoma with a mean latency of 3 to 4 months. During the preleukemic period (4 to 10 weeks postinoculation) a marked decrease in thymic size is apparent for M-MuLV-inoculated mice in comparison to age-matched uninoculated mice. We were interested in studying whether the thymic regression was due to an increased rate of thymocyte apoptosis in the thymi of M-MuLV-inoculated mice. Neonatal NIH/Swiss mice were inoculated subcutaneously (s.c.) with wild-type M-MuLV (approximately 105 XC PFU). Mice were sacrificed at 4 to 11 weeks postinoculation. Thymic single-cell suspensions were prepared and tested for apoptosis by two-parameter flow cytometry. Indications of apoptosis included changes in cell size and staining with 7-aminoactinomycin D or annexin V. The levels of thymocyte apoptosis were significantly higher in M-MuLV-inoculated mice than in uninoculated control animals, and the levels of apoptosis were correlated with thymic atrophy. To test the relevance of enhanced thymocyte apoptosis to leukemogenesis, mice were inoculated with the Mo+PyF101 enhancer variant of M-MuLV. When inoculated intraperitoneally, a route that results in wild-type M-MuLV leukemogenesis, mice displayed levels of enhanced thymocyte apoptosis comparable to those seen with wild-type M-MuLV. However, in mice inoculated s.c., a route that results in attenuated leukemogenesis, significantly lower levels of apoptosis were observed. This supported a role for higher levels of thymocyte apoptosis in M-MuLV leukemogenesis. To examine the possible role of mink cell focus-forming (MCF) recombinant virus in raising levels of thymocyte apoptosis, MCF-specific focal immunofluorescence assays were performed on thymocytes from preleukemic mice inoculated with M-MuLV and Mo+PyF101 M-MuLV. The results indicated that infection of thymocytes by MCF virus recombinants is not required for the increased level of apoptosis and thymic atrophy.


2003 ◽  
Vol 77 (21) ◽  
pp. 11651-11660 ◽  
Author(s):  
Mariam Andrawiss ◽  
Yasuhiro Takeuchi ◽  
Lindsay Hewlett ◽  
Mary Collins

ABSTRACT In order to track the assembly of murine leukemia virus (MLV), we used fluorescence microscopy to visualize particles containing Gag molecules fused to fluorescent proteins (FPs). Gag-FP chimeras budded from cells to produce fluorescent spots, which passed through the same pore-size filters and sedimented at the same velocity as authentic MLV. N-terminal myristylation of Gag-FPs was necessary for particle formation unless wild-type Gag was coexpressed. By labeling nonmyristylated Gag with yellow FP and wild-type Gag with cyan FP, we could quantitate the coincorporation of two proteins into single particles. This experiment showed that nonmyristylated Gag was incorporated into mixed particles at approximately 50% the efficiency of wild-type Gag. Mutations that inhibit Gag-Gag interactions (K. Alin and S. P. Goff, Virology 216:418-424, 1996; K. Alin and S. P. Goff, Virology 222:339-351, 1996) were then introduced into the capsid (CA) region of Gag-FPs. The mutations P150L and R119C/P133L inhibited fluorescent particle formation by these Gag-FPs, but Gag-FPs containing these mutations could be efficiently incorporated into particles when coexpressed with wild-type Gag. When these mutations were introduced into nonmyristylated Gag-FPs, no incorporation into particles in the presence of wild-type Gag was detected. These data suggest that two independent mechanisms, CA interactions and membrane association following myristylation, cooperate in MLV Gag assembly and budding.


Virology ◽  
2006 ◽  
Vol 347 (2) ◽  
pp. 364-371 ◽  
Author(s):  
S.J. Rulli ◽  
D. Muriaux ◽  
K. Nagashima ◽  
J. Mirro ◽  
M. Oshima ◽  
...  

2000 ◽  
Vol 74 (22) ◽  
pp. 10349-10358 ◽  
Author(s):  
Elias K. Halvas ◽  
Evguenia S. Svarovskaia ◽  
Vinay K. Pathak

ABSTRACT Retroviral populations exhibit a high evolutionary potential, giving rise to extensive genetic variation. Error-prone DNA synthesis catalyzed by reverse transcriptase (RT) generates variation in retroviral populations. Structural features within RTs are likely to contribute to the high rate of errors that occur during reverse transcription. We sought to determine whether amino acids within murine leukemia virus (MLV) RT that contact the deoxyribonucleoside triphosphate (dNTP) substrate are important for in vivo fidelity of reverse transcription. We utilized the previously described ANGIE P encapsidating cell line, which expresses the amphotropic MLV envelope and a retroviral vector (pGA-1). pGA-1 expresses the bacterial β-galactosidase gene (lacZ), which serves as a reporter of mutations. Extensive mutagenesis was performed on residues likely to interact with the dNTP substrate, and the effects of these mutations on the fidelity of reverse transcription were determined. As expected, most substitution mutations of amino acids that directly interact with the dNTP substrate significantly reduced viral titers (>10,000-fold), indicating that these residues played a critical role in catalysis and viral replication. However, the D153A and A154S substitutions, which are predicted to affect the interactions with the triphosphate, resulted in statistically significant increases in the mutation rate. In addition, the conservative substitution F155W, which may affect interactions with the base and the ribose, increased the mutation rate 2.8-fold. Substitutions of residues in the vicinity of the dNTP-binding site also resulted in statistically significant decreases in fidelity (1.3- to 2.4-fold). These results suggest that mutations of residues that contact the substrate dNTP can affect viral replication as well as alter the fidelity of reverse transcription.


2006 ◽  
Vol 80 (14) ◽  
pp. 7070-7078 ◽  
Author(s):  
Christian Metzl ◽  
Daniela Mischek ◽  
Brian Salmons ◽  
Walter H. Günzburg ◽  
Matthias Renner ◽  
...  

ABSTRACT Replication-competent retrovirus vectors based on murine leukemia virus (MLV) have been shown to effectively transfer therapeutic genes over multiple serial infections in cell culture and through solid tumors in vivo with a high degree of genomic stability. While simple retroviruses possess a natural tumor selectivity in that they can transduce only actively dividing cells, additional tumor-targeting strategies would nevertheless be advantageous, since tumor cells are not the only actively dividing cells. In this study, we used the promiscuous murine cytomegalovirus promoter, a chimeric regulatory sequence consisting of the hepatitis B virus enhancer II and the human α1-antitrypsin (EII-Pa1AT) promoter, and a synthetic regulatory sequence consisting of a series of T-cell factor binding sites named the CTP4 promoter to generate replicating MLV vectors, whereby the last two are transcriptionally restricted to liver- and β-catenin/T-cell factor-deregulated cells, respectively. When the heterologous promoters were used to replace almost the entire MLV U3 region, including the MLV TATA box, vector replication was inefficient since nascent virus particle production from infected cells was greatly decreased. Fusion of the heterologous promoters lacking the TATA box to the MLV TATA box, however, generated vectors which replicated with almost-wild-type kinetics throughout permissive cells while exhibiting low or negligible spread in nonpermissive cells. The genomic stability of the vectors was shown to be comparable to that of a similar vector containing wild-type MLV long terminal repeats, and tropism analysis over repeated infection cycles showed that the targeted vectors retained their original specificity.


Virology ◽  
1995 ◽  
Vol 206 (1) ◽  
pp. 93-99 ◽  
Author(s):  
Cornelia Speth ◽  
Arne Luz ◽  
P. Günter Strauss ◽  
Susanne Wendel ◽  
Reinhardt Zeidler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document