scholarly journals Perforin and Fas Cytolytic Pathways Coordinately Shape the Selection and Diversity of CD8+-T-Cell Escape Variants of Influenza Virus

2005 ◽  
Vol 79 (13) ◽  
pp. 8545-8559 ◽  
Author(s):  
Graeme E. Price ◽  
Lei Huang ◽  
Rong Ou ◽  
Menghua Zhang ◽  
Demetrius Moskophidis

ABSTRACT Antigenic variation is a viral strategy exploited to promote survival in the face of the host immune response and represents a major challenge for efficient vaccine development. Influenza viruses are pathogens with high transmissibility and mutation rates, enabling viral escape from immunity induced by prior infection or vaccination. Intense selection from neutralizing antibody drives antigenic changes in the surface glycoproteins, resulting in emergence of new strains able to reinfect hosts immune to previously circulating viruses. CD8+ cytotoxic T cells (CTLs) also provide protective immunity from influenza virus infection and may contribute to the antigenic evolution of influenza viruses. Utilizing mice transgenic for an influenza virus NP366-374 peptide-specific T-cell receptor, we demonstrated that the respiratory tract is a suitable site for generation of escape variants of influenza virus selected by CTL in vivo. In this report the contributions of the perforin and Fas pathways utilized by influenza virus-specific CTLs in viral clearance and selection of CTL escape variants have been evaluated. While transgenic CTLs deficient in either perforin- or Fas-mediated pathways are efficient in initial pulmonary viral control, variant virus emergence was observed in all the mice studied, although the spectrum of viral CTL escape variants selected varied profoundly. Thus, a less-restricted repertoire of escape variants was observed in mice with an intact perforin cytotoxic pathway compared with a limited variant diversity in perforin pathway-deficient mice, although maximal variant diversity was observed in mice having both Fas and perforin pathways intact. We conclude that selection of viral CTL escape variants reflects coordinate action between the tightly controlled perforin/granzyme pathway and the more promiscuous Fas/FasL pathway.

2000 ◽  
Vol 191 (11) ◽  
pp. 1853-1868 ◽  
Author(s):  
Graeme E. Price ◽  
Rong Ou ◽  
Hong Jiang ◽  
Lei Huang ◽  
Demetrius Moskophidis

Antigenic variation is a strategy exploited by influenza viruses to promote survival in the face of the host adaptive immune response and constitutes a major obstacle to efficient vaccine development. Thus, variation in the surface glycoproteins hemagglutinin and neuraminidase is reflected by changes in susceptibility to antibody neutralization. This has led to the current view that antibody-mediated selection of influenza A viruses constitutes the basis for annual influenza epidemics and periodic pandemics. However, infection with this virus elicits a vigorous protective CD8+ cytotoxic T lymphocyte (CTL) response, suggesting that CD8+ CTLs might exert selection pressure on the virus. Studies with influenza A virus–infected transgenic mice bearing a T cell receptor (TCR) specific for viral nucleoprotein reveal that virus reemergence and persistence occurs weeks after the acute infection has apparently been controlled. The persisting virus is no longer recognized by CTLs, indicating that amino acid changes in the major viral nucleoprotein CTL epitope can be rapidly accumulated in vivo. These mutations lead to a total or partial loss of recognition by polyclonal CTLs by affecting presentation of viral peptide by class I major histocompatibility complex (MHC) molecules, or by interfering with TCR recognition of the mutant peptide–MHC complex. These data illustrate the distinct features of pulmonary immunity in selection of CTL escape variants. The likelihood of emergence and the biological impact of CTL escape variants on the clinical outcome of influenza pneumonia in an immunocompetent host, which is relevant for the design of preventive vaccines against this and other respiratory viral infections, are discussed.


2020 ◽  
Author(s):  
Emma C Reilly ◽  
Kris Lambert Emo ◽  
Patrick M Buckley ◽  
Nicholas S Reilly ◽  
Francisco A Chaves ◽  
...  

AbstractTissue resident memory CD8 T (TRM) cells are a unique immune memory subset that develops and remains in peripheral tissues at the site of infection, providing future host resistance upon re-exposure to that pathogen. In the pulmonary system, TRM are identified through S1P antagonist CD69 and expression of integrins CD103/β7 and CD49a/CD29(β1). Contrary to the established role of CD69 on CD8 T cells, the functions of CD103 and CD49a on this population are not well defined. This study examines the expression patterns and functions of CD103 and CD49a with a specific focus on their impact on T cell motility during influenza virus infection. We show that the TRM cell surface phenotype develops by two-weeks post-infection and that each integrin contributes a distinct function regulating CD8 T cell motility both in vitro and in vivo, with CD49a facilitating migration and CD103 limiting motility through tethering. These results demonstrate for the first time how CD103 and CD49a differentially impact adherence and migration in the tissue, likely affecting overall retention, maintenance of TRM, and host protection.Significance StatementCurrent influenza vaccination strategies require annual immunizations, with fairly low efficacy rates. One technique to improve protection against a greater breadth of influenza viruses is to elicit broadly cross-reactive cell-mediated immunity and generate a local population of cytotoxic T cells to respond to conserved regions of circulating viruses. However, this approach requires improved understanding of how these cells migrate within and attach to the tissue, in order to persist and offer long-term immunity. This study investigates how receptors on the T cell surface impact the cell’s ability to interact with the tissue and provide evidence for which of these receptors are essential for protection. Furthermore, these studies reveal functional in vivo mechanisms of cellular markers used to characterize TRM.


Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 557 ◽  
Author(s):  
Li Zhang ◽  
Jungang Chen ◽  
Chang Ke ◽  
Haiwei Zhang ◽  
Shoujun Zhang ◽  
...  

Influenza virus infections can lead to viral pneumonia and acute respiratory distress syndrome in severe cases, causing significant morbidity and mortality and posing a great threat to human health. Because of the diversity of influenza virus strains and drug resistance to the current direct antiviral agents, there have been no effective drugs as yet to cure all patients infected by influenza viruses. Natural products from plants contain compounds with diverse structures that have the potential to interact with multiple host and virus factors. In this study, we identified the ethanol extract of Caesalpinia decapetala (Roth) Alston (EEC) as an inhibitor against the replication of a panel of influenza A and B viruses both on human pulmonary epithelial A549 and human monocytic U937 cells. The animal study revealed that EEC administration reduces the weight loss and improves the survival rate of mice infected with lethal influenza virus. Also, EEC treatment attenuated lung injury and reduced virus titer significantly. In conclusion, we showed that EEC has antiviral activity both in vitro and in vivo, suggesting that the plant C. decapetala has the potential to be further developed as a resource of new anti-influenza drugs.


2011 ◽  
Vol 18 (7) ◽  
pp. 1083-1090 ◽  
Author(s):  
Michael G. Wallach ◽  
Richard J. Webby ◽  
Fakhrul Islam ◽  
Stephen Walkden-Brown ◽  
Eva Emmoth ◽  
...  

ABSTRACTInfluenza viruses remain a major threat to global health due to their ability to undergo change through antigenic drift and antigenic shift. We postulated that avian IgY antibodies represent a low-cost, effective, and well-tolerated approach that can easily be scaled up to produce enormous quantities of protective antibodies. These IgY antibodies can be administered passively in humans (orally and intranasally) and can be used quickly and safely to help in the fight against an influenza pandemic. In this study, we raised IgY antibodies against H1N1, H3N2, and H5N1 influenza viruses. We demonstrated that, using whole inactivated viruses alone and in combination to immunize hens, we were able to induce a high level of anti-influenza virus IgY in the sera and eggs, which lasted for at least 2 months after two immunizations. Furthermore, we found that by use ofin vitroassays to test for the ability of IgY to inhibit hemagglutination (HI test) and virus infectivity (serum neutralization test), IgYs inhibited the homologous as well as in some cases heterologous clades and strains of viruses. Using anin vivomouse model system, we found that, when administered intranasally 1 h prior to infection, IgY to H5N1 protected 100% of the mice against lethal challenge with H5N1. Of particular interest was the finding that IgY to H5N1 cross-protected against A/Puerto Rico/8/34 (H1N1) bothin vitroandin vivo. Based on our results, we conclude that anti-influenza virus IgY can be used to help prevent influenza virus infection.


2021 ◽  
Author(s):  
Ke Li ◽  
Pengxing Cao ◽  
James M. McCaw

AbstractMUC1 belongs to the family of cell surface (cs-) mucins. Experimental evidence indicates that its presence reduces in vivo influenza viral infection severity. However, the mechanisms by which MUC1 influences viral dynamics and the host immune response are not yet well understood, limiting our ability to predict the efficacy of potential treatments that target MUC1. To address this limitation, we utilize available in vivo kinetic data for both virus and macrophage populations in wildtype and MUC1 knockout mice. We apply two mathematical models of within-host influenza dynamics to this data. The models differ in how they categorise the mechanisms of viral control. Both models provide evidence that MUC1 reduces the susceptibility of epithelial cells to influenza virus and regulates macrophage recruitment. Furthermore, we predict and compare some key infection-related quantities between the two mice groups. We find that MUC1 significantly reduces the basic reproduction number of viral replication as well as the number of cumulative macrophages but has little impact on the cumulative viral load. Our analyses suggest that the viral replication rate in the early stages of infection influences the kinetics of the host immune response, with consequences for infection outcomes, such as severity. We also show that MUC1 plays a strong anti-inflammatory role in the regulation of the host immune response. This study improves our understanding of the dynamic role of MUC1 against influenza infection and may support the development of novel antiviral treatments and immunomodulators that target MUC1.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 678
Author(s):  
Melissa Rioux ◽  
Magen E. Francis ◽  
Cynthia L. Swan ◽  
Anni Ge ◽  
Andrea Kroeker ◽  
...  

Many factors impact the host response to influenza virus infection and vaccination. Ferrets have been an indispensable reagent for influenza virus research for almost one hundred years. One of the most significant and well-known factors affecting human disease after infection is host age. Another significant factor is the virus, as strain-specific disease severity is well known. Studying age-related impacts on viral infection and vaccination outcomes requires an animal model that reflects both the physiological and immunological changes that occur with human aging, and sensitivity to differentially virulent influenza viruses. The ferret is uniquely susceptible to a plethora of influenza viruses impacting humans and has proven extremely useful in studying the clinical and immunological pictures of influenza virus infection. Moreover, ferrets developmentally have several of the age-related physiological changes that occur in humans throughout infancy, adulthood, old age, and pregnancy. In this review, we discuss ferret susceptibility to influenza viruses, summarize previous influenza studies using ferrets as models of age, and finally, highlight the application of ferret age models in the pursuit of prophylactic and therapeutic agents to address age-related influenza disease severity.


2008 ◽  
Vol 52 (11) ◽  
pp. 3889-3897 ◽  
Author(s):  
Natalia A. Ilyushina ◽  
Alan Hay ◽  
Neziha Yilmaz ◽  
Adrianus C. M. Boon ◽  
Robert G. Webster ◽  
...  

ABSTRACT We studied the effects of a neuraminidase inhibitor (oseltamivir) and an inhibitor of influenza virus polymerases (ribavirin) against two highly pathogenic H5N1 influenza viruses. In vitro, A/Vietnam/1203/04 virus (clade 1) was highly susceptible to oseltamivir carboxylate (50% inhibitory concentration [IC50] = 0.3 nM), whereas A/Turkey/15/06 virus (clade 2.2) had reduced susceptibility (IC50 = 5.5 nM). In vivo, BALB/c mice were treated with oseltamivir (1, 10, 50, or 100 mg/kg of body weight/day), ribavirin (37.5, 55, or 75 mg/kg/day), or the combination of both drugs for 8 days, starting 4 h before virus inoculation. Monotherapy produced a dose-dependent antiviral effect against the two H5N1 viruses in vivo. Three-dimensional analysis of the drug-drug interactions revealed that oseltamivir and ribavirin interacted principally in an additive manner, with several exceptions of marginal synergy or marginal antagonism at some concentrations. The combination of ribavirin at 37.5 mg/kg/day and oseltamivir at 1 mg/kg/day and the combination of ribavirin at 37.5 mg/kg/day and oseltamivir at 10 mg/kg/day were synergistic against A/Vietnam/1203/04 and A/Turkey/15/06 viruses, respectively. These optimal oseltamivir-ribavirin combinations significantly inhibited virus replication in mouse organs, prevented the spread of H5N1 viruses beyond the respiratory tract, and abrogated the cytokine response (P < 0.01). Importantly, we observed clear differences between the efficacies of the drug combinations against two H5N1 viruses: higher doses were required for the protection of mice against A/Turkey/15/06 virus than for the protection of mice against A/Vietnam/1203/04 virus. Our preliminary results suggest that oseltamivir-ribavirin combinations can have a greater or lesser antiviral effect than monotherapy, depending on the H5N1 virus and the concentrations used.


1981 ◽  
Vol 154 (1) ◽  
pp. 199-203 ◽  
Author(s):  
O Haller ◽  
H Arnheiter ◽  
I Gresser ◽  
J Lindenmann

The efficacy of interferon in antiviral protection of newborn mice differing at the Mx locus was investigated. Adult mice bearing the allele Mx exhibit a high degree of specific resistance toward lethal challenge with influenza viruses. In contrast, newborn Mx carriers are virtually as susceptible to influenza viruses as newborn mice devoid of Mx. Resistance can be abrogated by treating adult animals with anti-interferon serum. Here, we provide direct evidence of a virus-specific effect of interferon in vivo: newborn mice carrying the resistance gene Mx could be protected against lethal influenza virus infection with doses of interferon that were not protective in the absence of Mx. The efficacy of interferon towards a picornavirus (encephalomyocarditis virus) and a rhabdovirus (vesicular stomatitis virus) was independent of Mx.


2016 ◽  
Vol 90 (20) ◽  
pp. 9364-9382 ◽  
Author(s):  
Stephanie C. Talker ◽  
Maria Stadler ◽  
Hanna C. Koinig ◽  
Kerstin H. Mair ◽  
Irene M. Rodríguez-Gómez ◽  
...  

ABSTRACTPigs are natural hosts for influenza A viruses and play a critical role in influenza epidemiology. However, little is known about their influenza-evoked T-cell response. We performed a thorough analysis of both the local and systemic T-cell response in influenza virus-infected pigs, addressing kinetics and phenotype as well as multifunctionality (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], and interleukin-2 [IL-2]) and cross-reactivity. A total of 31 pigs were intratracheally infected with an H1N2 swine influenza A virus (FLUAVsw) and consecutively euthanized. Lungs, tracheobronchial lymph nodes, and blood were sampled during the first 15 days postinfection (p.i.) and at 6 weeks p.i.Ex vivoflow cytometry of lung lymphocytes revealed an increase in proliferating (Ki-67+) CD8+T cells with an early effector phenotype (perforin+CD27+) at day 6 p.i. Low frequencies of influenza virus-specific IFN-γ-producing CD4+and CD8+T cells could be detected in the lung as early as 4 days p.i. On consecutive days, influenza virus-specific CD4+and CD8+T cells produced mainly IFN-γ and/or TNF-α, reaching peak frequencies around day 9 p.i., which were up to 30-fold higher in the lung than in tracheobronchial lymph nodes or blood. At 6 weeks p.i., CD4+and CD8+memory T cells had accumulated in lung tissue. These cells showed diverse cytokine profiles andin vitroreactivity against heterologous influenza virus strains, all of which supports their potential to combat heterologous influenza virus infections in pigs.IMPORTANCEPigs not only are a suitable large-animal model for human influenza virus infection and vaccine development but also play a central role in the emergence of new pandemic strains. Although promising candidate universal vaccines are tested in pigs and local T cells are the major correlate of heterologous control, detailed and targeted analyses of T-cell responses at the site of infection are scarce. With the present study, we provide the first detailed characterization of magnitude, kinetics, and phenotype of specific T cells recruited to the lungs of influenza virus-infected pigs, and we could demonstrate multifunctionality, cross-reactivity, and memory formation of these cells. This, and ensuing work in the pig, will strengthen the position of this species as a large-animal model for human influenza virus infection and will immediately benefit vaccine development for improved control of influenza virus infections in pigs.


2016 ◽  
Vol 90 (13) ◽  
pp. 6085-6096 ◽  
Author(s):  
Wen-Chun Liu ◽  
Yu-Li Lin ◽  
Maureen Spearman ◽  
Pei-Yun Cheng ◽  
Michael Butler ◽  
...  

ABSTRACTInfluenza virus hemagglutinin (HA) N-glycans play important regulatory roles in the control of virus virulence, antigenicity, receptor-binding specificity, and viral escape from the immune response. Considered essential for controlling innate and adaptive immune responses against influenza virus infections, dendritic cells (DCs) trigger proinflammatory and adaptive immune responses in hosts. In this study, we engineered Chinese hamster ovary (CHO) cell lines expressing recombinant HA from pandemic H1, H5, and H7 influenza viruses. rH1HA, rH5HA, and rH7HA were obtained as wild-type proteins or in the presence of kifunensine (KIF) or further with endo-β-N-acetylglucosaminidase-treated KIF (KIF+E) to generate single-N-acetylglucosamine (GlcNAc) N-glycans consisting of (i) terminally sialylated complex-type N-glycans, (ii) high-mannose-type N-glycans, and (iii) single-GlcNAc-type N-glycans. Our results show that high-mannose-type and single-GlcNAc-type N-glycans, but not complex-type N-glycans, are capable of inducing more active hIL12 p40, hIL12 p70, and hIL-10 production in human DCs. Significantly higher HLA-DR, CD40, CD83, and CD86 expression levels, as well reduced endocytotic capacity in human DCs, were noted in the high-mannose-type rH1HA and single-GlcNAc-type rH1HA groups than in the complex-type N-glycan rH1HA group. Our data indicate that native avian rHA proteins (H5N1 and H7N9) are more immunostimulatory than human rHA protein (pH1N1). The high-mannose-type or single-GlcNAc-type N-glycans of both avian and human HA types are more stimulatory than the complex-type N-glycans. HA-stimulated DC activation was accomplished partially through a mannose receptor(s). These results provide more understanding of the contribution of glycosylation of viral proteins to the immune responses and may have implications for vaccine development.IMPORTANCEInfluenza viruses trigger seasonal epidemics or pandemics with mild-to-severe consequences for human and poultry populations. DCs are the most potent professional antigen-presenting cells, which play a crucial role in the link between innate and adaptive immunity. In this study, we obtained stable-expression CHO cells to produce rH1HA, rH5HA, and rH7HA proteins containing distinct N-glycan patterns. These rHA proteins, each with a distinct N-glycan pattern, were used to investigate interactions with mouse and human DCs. Our data indicate that native avian rHA proteins (H5N1 and H7N9) are more immunostimulatory than human rHA protein (pH1N1). High-mannose-type and single-GlcNAc-type N-glycans were more effective than complex-type N-glycans in triggering mouse and human DC activation and maturation. We believe these results provide some useful information for influenza vaccine development regarding how influenza virus HA proteins with different types of N-glycans activate DCs.


Sign in / Sign up

Export Citation Format

Share Document