scholarly journals Rmcf2, a Xenotropic Provirus in the Asian Mouse Species Mus castaneus, Blocks Infection by Polytropic Mouse Gammaretroviruses

2005 ◽  
Vol 79 (15) ◽  
pp. 9677-9684 ◽  
Author(s):  
Tiyun Wu ◽  
Yuhe Yan ◽  
Christine A. Kozak

ABSTRACT Cells from the Asian wild mouse species Mus castaneus are resistant to infection by the polytropic host range group of mouse gammaretroviruses. Two factors are responsible for this resistance: a defective XPR1 cell surface receptor for polytropic murine leukemia viruses (P-MLVs), and a resistance factor detectable only in interspecies hybrids between M. castaneus and mice with an XPR1 variant that permits infection by xenotropic MLVs (X-MLVs) as well as P-MLVs. This second novel virus resistance phenotype has been associated with expression of viral Env glycoprotein; Northern blotting with specific hybridization probes identified a spliced X-MLV env message unique to virus-resistant mice. These observations suggest that resistance is due to expression of one or more endogenous X-MLV envelope genes that interfere with infection by exogenous P-MLVs. M. castaneus contains multiple X-MLV proviruses, but serial backcrosses reduced this proviral content and permitted identification of a single proviral env sequence inherited with resistance. The resistance phenotype and the provirus were mapped to the same site on distal chromosome 18. The provirus was shown to be a full-length provirus highly homologous to previously described X-MLVs. Use of viral pseudotypes confirmed that this resistance gene, termed Rmcf2, prevents entry of P-MLVs. Rmcf2 resembles the virus resistance genes Fv4 and Rmcf in that it produces Env glycoprotein but fails to produce infectious virus; the proviruses associated with all three resistance genes have fatal defects. This type of provirus Env-mediated resistance represents an important defense mechanism in wild mouse populations exposed to endemic infections.

2001 ◽  
Vol 120 (5) ◽  
pp. A18-A19
Author(s):  
B DIECKGRAEFE ◽  
C HOUCHEN ◽  
H ZHANG

2019 ◽  
Vol 20 (3) ◽  
pp. 340-346 ◽  
Author(s):  
Armando Rojas ◽  
Miguel Morales ◽  
Ileana Gonzalez ◽  
Paulina Araya

The Receptor for Advanced Glycation End Products (RAGE) is an important cell surface receptor, which belongs to the IgG super family and is now considered as a pattern recognition receptor. Because of its relevance in many human clinical settings, it is now pursued as a very attractive therapeutic target. However, particular features of this receptor such as a wide repertoire of ligands with different binding domains, the existence of many RAGE variants as well as the presence of cytoplasmatic adaptors leading a diverse signaling, are important limitations in the search for successful pharmacological approaches to inhibit RAGE signaling. Therefore, the present review aimed to display the most promising approaches to inhibit RAGE signaling, and provide an up to date review of progress in this area.


Toxins ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 181
Author(s):  
Masami Suganuma ◽  
Tatsuro Watanabe ◽  
Eisaburo Sueoka ◽  
In Kyoung Lim ◽  
Hirota Fujiki

The tumor necrosis factor-α (TNF-α)-inducing protein (tipα) gene family, comprising Helicobacter pylori membrane protein 1 (hp-mp1) and tipα, has been identified as a tumor promoter, contributing to H. pylori carcinogenicity. Tipα is a unique H. pylori protein with no similarity to other pathogenicity factors, CagA, VacA, and urease. American H. pylori strains cause human gastric cancer, whereas African strains cause gastritis. The presence of Tipα in American and Euro-Asian strains suggests its involvement in human gastric cancer development. Tipα secreted from H. pylori stimulates gastric cancer development by inducing TNF-α, an endogenous tumor promoter, through its interaction with nucleolin, a Tipα receptor. This review covers the following topics: tumor-promoting activity of the Tipα family members HP-MP1 and Tipα, the mechanism underlying this activity of Tipα via binding to the cell-surface receptor, nucleolin, the crystal structure of rdel-Tipα and N-terminal truncated rTipα, inhibition of Tipα-associated gastric carcinogenesis by tumor suppressor B-cell translocation gene 2 (BTG2/TIS21), and new strategies to prevent and treat gastric cancer. Thus, Tipα contributes to the carcinogenicity of H. pylori by a mechanism that differs from those of CagA and VacA.


1986 ◽  
Vol 24 (5) ◽  
pp. 304-308 ◽  
Author(s):  
Konrad Huppi ◽  
Lawrence D'Hoostelaere ◽  
Michael Kiefer ◽  
Michael Steinmetz ◽  
Evelyne Jouvin-Marche

1985 ◽  
Vol 248 (6) ◽  
pp. H907-H913 ◽  
Author(s):  
L. J. Heller ◽  
R. A. Olsson

This study was designed to characterize adenosine's negative chronotropic effect on ventricular pacemakers. The spontaneous beating rate of isolated, isovolumic rat ventricular preparations perfused with Krebs-Henseleit solution decreased as the adenosine concentration was increased [log M effective concentration 50% (EC50) = -5.22 +/- 0.17]. The lack of effect of propranolol or atropine on this adenosine response eliminates the involvement of endogenous neurotransmitters. Support for the involvement of an external cell surface receptor was provided by findings that theophylline and 8-(4-sulfophenyl)theophylline, an analogue thought to act solely at the cell surface, significantly increased the adenosine log M EC50 to -3.94 +/- 0.22 and -3.61 +/- 0.22, respectively. An increase in spontaneous beating rate induced by theophylline, but not by its analogue, was blocked by the addition of propranolol. The relative chronotropic potency of the adenosine analogues R-PIA, S-PIA, and NECA suggests that the cell surface receptors may be of the Ri type. The negative chronotropic effects of adenosine and its analogues occurred at concentrations that had no effect on the developed pressure of the paced preparation. Electrocardiographic evaluations indicate that at high agonist concentrations, there was an abrupt alteration in electrical properties of the preparation, which could be blocked by theophylline and its analogue.


Sign in / Sign up

Export Citation Format

Share Document