scholarly journals Green Fluorescent Protein-Tagged Adeno-Associated Virus Particles Allow the Study of Cytosolic and Nuclear Trafficking

2005 ◽  
Vol 79 (18) ◽  
pp. 11776-11787 ◽  
Author(s):  
Kerstin Lux ◽  
Nico Goerlitz ◽  
Stefanie Schlemminger ◽  
Luca Perabo ◽  
Daniela Goldnau ◽  
...  

ABSTRACT To allow the direct visualization of viral trafficking, we genetically incorporated enhanced green fluorescent protein (GFP) into the adeno-associated virus (AAV) capsid by replacement of wild-type VP2 by GFP-VP2 fusion proteins. High-titer virus progeny was obtained and used to elucidate the process of nuclear entry. In the absence of adenovirus 5 (Ad5), nuclear translocation of AAV capsids was a slow and inefficient process: at 2 h and 4 h postinfection (p.i.), GFP-VP2-AAV particles were found in the perinuclear area and in nuclear invaginations but not within the nucleus. In Ad5-coinfected cells, isolated GFP-VP2-AAV particles were already detectable in the nucleus at 2 h p.i., suggesting that Ad5 enhanced the nuclear translocation of AAV capsids. The number of cells displaying viral capsids within the nucleus increased slightly over time, independently of helper virus levels, but the majority of the AAV capsids remained in the perinuclear area under all conditions analyzed. In contrast, independently of helper virus and with 10 times less virions per cell already observed at 2 h p.i., viral genomes were visible within the nucleus. Under these conditions and even with prolonged incubation times (up to 11 h p.i.), no intact viral capsids were detectable within the nucleus. In summary, the results show that GFP-tagged AAV particles can be used to study the cellular trafficking and nuclear entry of AAV. Moreover, our findings argue against an efficient nuclear entry mechanism of intact AAV capsids and favor the occurrence of viral uncoating before or during nuclear entry.

1998 ◽  
Vol 111 (13) ◽  
pp. 1767-1778 ◽  
Author(s):  
C.L. Ho ◽  
J.L. Martys ◽  
A. Mikhailov ◽  
G.G. Gundersen ◽  
R.K. Liem

In order to study the dynamic behavior of intermediate filament networks in living cells, we have prepared constructs fusing green fluorescent protein to intermediate filament proteins. Vimentin fused to green fluorescent protein labeled the endogenous intermediate filament network. We generated stable SW13 and NIH3T3 cell lines that express an enhanced green fluorescent protein fused to the N-terminus of full-length vimentin. We were able to observe the dynamic behavior of the intermediate filament network in these cells for periods as long as 4 hours (images acquired every 2 minutes). In both cell lines, the vimentin network constantly moves in a wavy manner. In the NIH3T3 cells, we observed extension of individual vimentin filaments at the edge of the cell. This movement is dependent on microtubules, since the addition of nocodazole stopped the extension of the intermediate filaments. Injection of anti-IFA causes the redistribution or ‘collapse’ of intermediate filaments. We injected anti-IFA antibodies into NIH3T3 cells stably expressing green fluorescent protein fused to vimentin and found that individual intermediate filaments move slowly towards the perinuclear area without obvious disassembly. These results demonstrate that individual intermediate filaments are translocated during the collapse, rather than undergoing disassembly-induced redistribution. Injections of tubulin antibodies disrupt the interactions between intermediate filaments and stable microtubules and cause the collapse of the vimentin network showing that these interactions play an important role in keeping the intermediate filament network extended. The nocodazole inhibition of intermediate filament extension and the anti-IFA microinjection experiments are consistent with a model in which intermediate filaments exhibit an extended distribution when tethered to microtubules, but are translocated to the perinuclear area when these connections are severed.


2019 ◽  
Vol 14 ◽  
pp. 117906951988902 ◽  
Author(s):  
Asad Jan ◽  
Mette Richner ◽  
Christian B Vægter ◽  
Jens R Nyengaard ◽  
Poul H Jensen

Recombinant adeno-associated virus (rAAV) vectors have emerged as the safe vehicles of choice for long-term gene transfer in mammalian nervous system. Recombinant adeno-associated virus–mediated localized gene transfer in adult nervous system following direct inoculation, that is, intracerebral or intrathecal, is well documented. However, recombinant adeno-associated virus delivery in defined neuronal populations in adult animals using less-invasive methods as well as avoiding ectopic gene expression following systemic inoculation remain challenging. Harnessing the capability of some recombinant adeno-associated virus serotypes for retrograde transduction may potentially address such limitations (Note: The term retrograde transduction in this manuscript refers to the uptake of injected recombinant adeno-associated virus particles at nerve terminals, retrograde transport, and subsequent transduction of nerve cell soma). In some studies, recombinant adeno-associated virus serotypes 2/6, 2/8, and 2/9 have been shown to exhibit transduction of connected neuroanatomical tracts in adult animals following lower limb intramuscular recombinant adeno-associated virus delivery in a pattern suggestive of retrograde transduction. However, an extensive side-by-side comparison of these serotypes following intramuscular delivery regarding tissue viral load, and the effect of promoter on transgene expression, has not been performed. Hence, we delivered recombinant adeno-associated virus serotypes 2/6, 2/8, or 2/9 encoding enhanced green fluorescent protein (eGFP), under the control of either cytomegalovirus (CMV) or human synapsin (hSyn) promoter, via a single unilateral hindlimb intramuscular injection in the bicep femoris of adult C57BL/6J mice. Four weeks post injection, we quantified viral load and transgene (enhanced green fluorescent protein) expression in muscle and related nervous tissues. Our data show that the select recombinant adeno-associated virus serotypes transduce sciatic nerve and groups of neurons in the dorsal root ganglia on the injected side, indicating that the intramuscular recombinant adeno-associated virus delivery is useful for achieving gene transfer in local neuroanatomical tracts. We also observed sparse recombinant adeno-associated virus viral delivery or eGFP transduction in lumbar spinal cord and a noticeable lack thereof in brain. Therefore, further improvements in recombinant adeno-associated virus design are warranted to achieve efficient widespread retrograde transduction following intramuscular and possibly other peripheral routes of delivery.


2003 ◽  
Vol 44 (2) ◽  
pp. 772 ◽  
Author(s):  
Kathleen A. Hansen ◽  
Ilene K. Sugino ◽  
Fumihiko Yagi ◽  
Hao Wang ◽  
Itsuro Tsukahara ◽  
...  

2009 ◽  
Vol 83 (8) ◽  
pp. 3919-3929 ◽  
Author(s):  
F. Curtis Hewitt ◽  
Chengwen Li ◽  
Steven J. Gray ◽  
Shelley Cockrell ◽  
Michael Washburn ◽  
...  

ABSTRACT Current adeno-associated virus (AAV) gene therapy vectors package a transgene flanked by the terminal repeats (TRs) of AAV type 2 (AAV2). Although these vectors are replication deficient, wild-type (wt) AAV2 prevalent in the human population could lead to replication and packaging of a type 2 TR (TR2)-flanked transgene in trans during superinfection by a helper virus, leading to “mobilization” of the vector genome from treated cells. More importantly, it appears likely that the majority of currently characterized AAV serotypes as well as the majority of new novel isolates are capable of rescuing and replicating AAV2 vector templates. To investigate this possibility, we flanked a green fluorescent protein transgene with type 2 and, the most divergent AAV serotype, type 5 TRs (TR2 or TR5). Consistent with AAV clades, AAV5 specifically replicated TR5 vectors, while AAV2 and AAV6 replicated TR2-flanked vectors. To exploit this specificity, we created a TR5 vector production system for Cap1 to Cap5. Next, we showed that persisting recombinant AAV genomes flanked by TR2s or TR5s were mobilized in vitro after addition of the cognate AAV Rep (as well as Rep6 for TR2) and adenoviral helper. Finally, we showed that a cell line containing a stably integrated wt AAV2 genome resulted in mobilization of a TR2-flanked vector but not a TR5-flanked vector upon adenoviral superinfection. Based on these data and the relative prevalence of wt AAV serotypes in the population, we propose that TR5 vectors have a significantly lower risk of mobilization and should be considered for clinical use.


Author(s):  
Xiangjun Huang ◽  
Hongwu Luo ◽  
Fei Huang ◽  
Xun Liu

AbstractHuman amniotic epithelial cells (hAECs) are a recently identified type of stem cell. Thanks to their ready availability and the lower risk of teratoma formation, hAECs have been studied and tested for a variety of human disease treatments and tissue reconstruction efforts. This aim of this study was to establish a stable tracking system to further monitor hAECs in vivo after transplantation. hAECs were isolated from the placentas of patients who visited the Hunan Province Maternity and Child Care Hospitals between Jan 2008 and Jan 2009. Using the classic transfection/infection technique, we successfully introduced green fluorescent protein (GFP) into cultured hAECs with an adeno-associated virus (AAV) vector. The initial preparation of the AAV-GFP virus stock was titrated using HT1081 cells, and further used for the infection of hAECs. GFP+ hAECs preserve the capacity of differentiation into hepatocytelike cells with the expression of cytokeratin-18 (CK18) and albumin (ALB). AAV-GFP virus-infected hAECs were transplanted through the spleen into severe combined immune deficiency (SCID) mice via hepatectomy. Four weeks later, the GFP and human albumin expressions were examined in multiple organs through immunoflourence staining. In culture, over 50% of the hAECs were GFP-positive 3 days after infection. Following transplantation, AAV-GFPinfected hAECs survived and continued to express GFP in the host for up to 4 weeks. These cells were primarily found in the spleen and liver, expressing human albumin. This study provides a feasible and stable system to track hAECs. It may prove useful to further identify their biological characteristics after transplantation and to elucidate their beneficial roles for therapeutic purposes.


Sign in / Sign up

Export Citation Format

Share Document