scholarly journals Role of Endosomal Cathepsins in Entry Mediated by the Ebola Virus Glycoprotein

2006 ◽  
Vol 80 (8) ◽  
pp. 4174-4178 ◽  
Author(s):  
Kathryn Schornberg ◽  
Shutoku Matsuyama ◽  
Kirsten Kabsch ◽  
Sue Delos ◽  
Amy Bouton ◽  
...  

ABSTRACT Using chemical inhibitors and small interfering RNA (siRNA), we have confirmed roles for cathepsin B (CatB) and cathepsin L (CatL) in Ebola virus glycoprotein (GP)-mediated infection. Treatment of Ebola virus GP pseudovirions with CatB and CatL converts GP1 from a 130-kDa to a 19-kDa species. Virus with 19-kDa GP1 displays significantly enhanced infection and is largely resistant to the effects of the CatB inhibitor and siRNA, but it still requires a low-pH-dependent endosomal/lysosomal function. These and other results support a model in which CatB and CatL prime GP by generating a 19-kDa intermediate that can be acted upon by an as yet unidentified endosomal/lysosomal enzyme to trigger fusion.

2006 ◽  
Vol 80 (6) ◽  
pp. 2815-2822 ◽  
Author(s):  
Séverine Bär ◽  
Ayato Takada ◽  
Yoshihiro Kawaoka ◽  
Marc Alizon

ABSTRACT Ebola viruses (EboV) are enveloped RNA viruses infecting cells by a pH-dependent process mediated by viral glycoproteins (GP) involving endocytosis of virions and their routing into acidic endosomes. As with well-characterized pH-dependent viral entry proteins, in particular influenza virus hemagglutinin, it is thought that EboV GP require activation by low pH in order to mediate fusion of the viral envelope with the membrane of endosomes. However, it has not yet been possible to confirm the direct role of EboV GP in membrane fusion and the requirement for low-pH activation. It was in particular not possible to induce formation of syncytia by exposing cells expressing EboV GP to acidic medium. Here, we have used an assay based on the induction of a β-galactosidase (lacZ) reporter gene in target cells to detect cytoplasmic exchanges, indicating membrane fusion, with cells expressing EboV GP (Zaire species). Acidic activation of GP-expressing cells was required for efficient fusion with target cells. The direct role of EboV GP in this process is indicated by its inhibition by anti-GP antibodies and by the lack of activity of mutant GP normally expressed at the cell surface but defective for virus entry. Fusion was not observed when target cells underwent acidic treatment, for example, when they were placed in coculture with GP-expressing cells before the activation step. This unexpected feature, possibly related to the nature of the EboV receptor, could explain the impossibility of inducing formation of syncytia among GP-expressing cells.


1981 ◽  
Vol 196 (1) ◽  
pp. 41-48 ◽  
Author(s):  
S E Knowles ◽  
F J Ballard ◽  
G Livesey ◽  
K E Williams

1. The effects of leupeptin and other microbial proteinase inhibitors were measured in rat yolk sacs on the uptake and degradation of formaldehyde-denatured 125I-labelled bovine serum albumin as well as on the degradation of 3H-labelled endogenous protein. 2. Leupeptin, at concentrations between 1 and 100 micrograms/ml, inhibits the degradation of added albumin without affecting pinocytic uptake. Accordingly large amounts of undegraded albumin accumulate within the tissue. 3. Removal of leupeptin produces a rapid recovery of the capacity to degrade albumin. 4. Endogenous protein degradation is rapidly inhibited by leupeptin, but to a far lesser extent than the breakdown of albumin. However, the inhibition is only slightly reversed on removal of leupeptin. 5. Degradation of both albumin and endogenous protein in intact yolk sacs is inhibited by the microbial proteinase inhibitors in the order: leupeptin greater than antipain greater than chymostatin; elastatinal, pepstatin and bestatin are ineffective. 6. Similar results are found when albumin is incubated in yolk-sac homogenates at pH 4 with the inhibitors. 7. The marked inhibitory effects of leupeptin, antipain and chymostatin suggest that cathepsin B and possibly cathepsin L participate in the degradation of 125I-labelled albumin in yolk sacs. By comparison, the smaller inhibitory effects of the proteinase inhibitors on endogenous protein breakdown imply a minor role of lysosomal cathepsins in this process.


2007 ◽  
Vol 189 (6) ◽  
pp. 2426-2434 ◽  
Author(s):  
Yi Wen ◽  
Jing Feng ◽  
David R. Scott ◽  
Elizabeth A. Marcus ◽  
George Sachs

ABSTRACT The periplasmic α-carbonic anhydrase of Helicobacter pylori is essential for buffering the periplasm at acidic pH. This enzyme is an integral component of the acid acclimation response that allows this neutralophile to colonize the stomach. Transcription of the HP1186 α-carbonic anhydrase gene is upregulated in response to low environmental pH. A binding site for the HP0166 response regulator (ArsR) has been identified in the promoter region of the HP1186 gene. To investigate the mechanism that regulates the expression of HP1186 in response to low pH and the role of the HP0165-HP0166 two-component system (ArsRS) in this acid-inducible regulation, Northern blot analysis was performed with RNAs isolated from two different wild-type H. pylori strains (26695 and 43504) and mutants with HP0165 histidine kinase (ArsS) deletions, after exposure to either neutral pH or low pH (pH 4.5). ArsS-dependent upregulation of HP1186 α-carbonic anhydrase in response to low pH was found in both strains. Western blot analysis of H. pylori membrane proteins confirmed the regulatory role of ArsS in HP1186 expression in response to low pH. Analysis of the HP1186 promoter region revealed two possible transcription start points (TSP1 and TSP2) located 43 and 11 bp 5′ of the ATG start codon, respectively, suggesting that there are two promoters transcribing the HP1186 gene. Quantitative primer extension analysis showed that the promoter from TSP1 (43 bp 5′ of the ATG start codon) is a pH-dependent promoter and is regulated by ArsRS in combating environmental acidity, whereas the promoter from TSP2 may be responsible for control of the basal transcription of HP1186 α-carbonic anhydrase.


2020 ◽  
Author(s):  
Swetha Mohan ◽  
Paul J. Sampognaro ◽  
Andrea R. Argouarch ◽  
Jason C. Maynard ◽  
Anand Patwardhan ◽  
...  

Abstract Background: Progranulin loss-of-function mutations are linked to frontotemporal lobar degeneration with TDP-43 positive inclusions (FTLD-TDP-Pgrn). Progranulin (PGRN) is an intracellular and secreted pro-protein that is proteolytically cleaved into individual granulin peptides, which are increasingly thought to contribute to FTLD-TDP-Pgrn disease pathophysiology. Intracellular PGRN is processed into granulins in the endo-lysosomal compartments. Therefore, to better understand the conversion of intracellular PGRN into granulins, we systematically tested the ability of different classes of endo-lysosomal proteases at a range of pH setpoints.Results: In vitro cleavage assays identified multiple enzymes that can process human PGRN into multi- and single-granulin fragments in a pH-dependent manner. We confirmed the role of cathepsin B and cathepsin L in PGRN processing and showed that these and several previously unidentified lysosomal proteases (cathepsins E, G, K, S and V) are able to process PGRN in variable, pH-dependent manners. In addition, we have demonstrated a new role for asparagine endopeptidase (AEP) in processing PGRN, with AEP having the unique ability to liberate granulin F from the pro-protein. Brain tissue from individuals with FTLD-TDP-Pgrn show increased PGRN processing to granulin F, correlating with increased activity of AEP, in a region-specific manner. Conclusions: This study demonstrates that multiple lysosomal proteases may work in concert to liberate granulins and implicates both AEP and granulin F in the neurobiology of FTLD-TDP-Pgrn. Modulating progranulin cleavage may represent a new strategy to modulate PGRN and granulin levels in disease.


2018 ◽  
Vol 114 (3) ◽  
pp. 605a
Author(s):  
Ruben M. Markosyan ◽  
Mariana Marin ◽  
Fredric S. Cohen ◽  
Gregory B. Melikyan

2020 ◽  
Author(s):  
Swetha Mohan ◽  
Paul J. Sampognaro ◽  
Andrea R. Argouarch ◽  
Jason C. Maynard ◽  
Anand Patwardhan ◽  
...  

Abstract Background - Progranulin loss-of-function mutations are linked to frontotemporal lobar degeneration with TDP-43 positive inclusions (FTLD-TDP-Pgrn). Progranulin (PGRN) is an intracellular and secreted pro-protein that is proteolytically cleaved into individual granulin peptides, which are increasingly thought to contribute to FTLD-TDP-Pgrn disease pathophysiology. Intracellular PGRN is processed into granulins in the endo-lysosomal compartments. Therefore, to better understand the conversion of intracellular PGRN into granulins, we systematically tested the ability of different classes of endo-lysosomal proteases to process PGRN at a range of pH setpoints. Results - In vitro cleavage assays identified multiple enzymes that can process human PGRN into multi- and single-granulin fragments in a pH-dependent manner. We confirmed the role of cathepsin B and cathepsin L in PGRN processing and showed that these and several previously unidentified lysosomal proteases (cathepsins E, G, K, S and V) are able to process PGRN in distinctive, pH-dependent manners. In addition, we have demonstrated a new role for asparagine endopeptidase (AEP) in processing PGRN, with AEP having the unique ability to liberate granulin F from the pro-protein. Brain tissue from individuals with FTLD-TDP-Pgrn show increased PGRN processing to granulin F and an increased activity of AEP, in a region-specific manner. Conclusions - This study demonstrates that multiple lysosomal proteases may work in concert to liberate multi-granulin fragments and granulins. It also implicates both AEP and granulin F in the neurobiology of FTLD-TDP-Pgrn. Modulating progranulin cleavage and granulin production may represent therapeutic strategies for FTLD-Pgrn and other progranulin-related diseases.


2020 ◽  
Author(s):  
Swetha Mohan ◽  
Paul J. Sampognaro ◽  
Andrea R. Argouarch ◽  
Jason C. Maynard ◽  
Anand Patwardhan ◽  
...  

Abstract Background - Progranulin loss-of-function mutations are linked to frontotemporal lobar degeneration with TDP-43 positive inclusions (FTLD-TDP-Pgrn). Progranulin (PGRN) is an intracellular and secreted pro-protein that is proteolytically cleaved into individual granulin peptides, which are increasingly thought to contribute to FTLD-TDP-Pgrn disease pathophysiology. Intracellular PGRN is processed into granulins in the endo-lysosomal compartments. Therefore, to better understand the conversion of intracellular PGRN into granulins, we systematically tested the ability of different classes of endo-lysosomal proteases at a range of pH setpoints. Results - In vitro cleavage assays identified multiple enzymes that can process human PGRN into multi- and single-granulin fragments in a pH-dependent manner. We confirmed the role of cathepsin B and cathepsin L in PGRN processing and showed that these and several previously unidentified lysosomal proteases (cathepsins E, G, K, S and V) are able to process PGRN in variable, pH-dependent manners. In addition, we have demonstrated a new role for asparagine endopeptidase (AEP) in processing PGRN, with AEP having the unique ability to liberate granulin F from the pro-protein. Brain tissue from individuals with FTLD-TDP-Pgrn show increased PGRN processing to granulin F, correlating with increased activity of AEP, in a region-specific manner. Conclusions - This study demonstrates that multiple lysosomal proteases may work in concert to liberate granulins and implicates both AEP and granulin F in the neurobiology of FTLD-TDP-Pgrn. Modulating progranulin cleavage may represent a new strategy to modulate PGRN and granulin levels in disease.


Sign in / Sign up

Export Citation Format

Share Document