scholarly journals The Fungal Pathogen Candida albicans Autoinduces Hyphal Morphogenesis by Raising Extracellular pH

mBio ◽  
2011 ◽  
Vol 2 (3) ◽  
Author(s):  
Slavena Vylkova ◽  
Aaron J. Carman ◽  
Heather A. Danhof ◽  
John R. Collette ◽  
Huaijin Zhou ◽  
...  

ABSTRACTpH homeostasis is critical for all organisms; in the fungal pathogenCandida albicans, pH adaptation is critical for virulence in distinct host niches. We demonstrate that beyond adaptation,C. albicansactively neutralizes the environment from either acidic or alkaline pHs. Under acidic conditions, this species can raise the pH from 4 to >7 in less than 12 h, resulting in autoinduction of the yeast-hyphal transition, a critical virulence trait. Extracellular alkalinization has been reported to occur in several fungal species, but under the specific conditions that we describe, the phenomenon is more rapid than previously observed. Alkalinization is linked to carbon deprivation, as it occurs in glucose-poor media and requires exogenous amino acids. These conditions are similar to those predicted to exist inside phagocytic cells, and we find a strong correlation between the use of amino acids as a cellular carbon source and the degree of alkalinization. Genetic and genomic approaches indicate an emphasis on amino acid uptake and catabolism in alkalinizing cells. Mutations in four genes,STP2, a transcription factor regulating amino acid permeases,ACH1(acetyl-coenzyme A [acetyl-CoA] hydrolase),DUR1,2(urea amidolyase), andATO5, a putative ammonia transporter, abolish or delay neutralization. The pH changes are the result of the extrusion of ammonia, as observed in other fungi. We propose that nutrient-deprivedC. albicanscells catabolize amino acids as a carbon source, excreting the amino nitrogen as ammonia to raise environmental pH and stimulate morphogenesis, thus directly contributing to pathogenesis.IMPORTANCECandida albicansis the most important fungal pathogen of humans, causing disease at multiple body sites. The ability to switch between multiple morphologies, including a rounded yeast cell and an elongated hyphal cell, is a key virulence trait in this species, as this reversible switch is thought to promote dissemination and tissue invasion in the host. We report here thatC. albicanscan actively alter the pH of its environment and induce its switch to the hyphal form. The change in pH is caused by the release of ammonia from the cells produced during the breakdown of amino acids. This phenomenon is unprecedented in a human pathogen and may substantially impact host physiology by linking morphogenesis, pH adaptation, carbon metabolism, and interactions with host cells, all of which are critical for the ability ofC. albicansto cause disease.

2011 ◽  
Vol 10 (9) ◽  
pp. 1219-1229 ◽  
Author(s):  
Lucie Kraidlova ◽  
Griet Van Zeebroeck ◽  
Patrick Van Dijck ◽  
Hana Sychrová

ABSTRACTTheSaccharomyces cerevisiaegeneral amino acid permease Gap1 (ScGap1) not only mediates the uptake of most amino acids but also functions as a receptor for the activation of protein kinase A (PKA). Fungal pathogens can colonize different niches in the host, each containing various levels of different amino acids and sugars. TheCandida albicansgenome contains six genes homologous to theS. cerevisiae GAP1. The expression of these six genes inS. cerevisiaeshowed that the products of all sixC. albicansgenes differ in their transport capacities.C. albicansGap2 (CaGap2) is the true orthologue ofScGap1 as it transports all tested amino acids. The otherCaGap proteins have narrower substrate specificities thoughCaGap1 andCaGap6 transport several structurally unrelated amino acids.CaGap1,CaGap2, andCaGap6 also function as sensors. Upon detecting some amino acids, e.g., methionine, they are involved in a rapid activation of trehalase, a downstream target of PKA. Our data show thatCaGAPgenes can be functionally expressed inS. cerevisiaeand thatCaGap permeases communicate to the intracellular signal transduction pathway similarly toScGap1.


2020 ◽  
Vol 88 (5) ◽  
Author(s):  
Pedro Miramón ◽  
Andrew W. Pountain ◽  
Ambro van Hoof ◽  
Michael C. Lorenz

ABSTRACT Nutrient acquisition is a central challenge for all organisms. For the fungal pathogen Candida albicans, utilization of amino acids has been shown to be critical for survival, immune evasion, and escape, while the importance of catabolism of host-derived proteins and peptides in vivo is less well understood. Stp1 and Stp2 are paralogous transcription factors (TFs) regulated by the Ssy1-Ptr3-Ssy5 (SPS) amino acid sensing system and have been proposed to have distinct, if uncertain, roles in protein and amino acid utilization. We show here that Stp1 is required for proper utilization of peptides but has no effect on amino acid catabolism. In contrast, Stp2 is critical for utilization of both carbon sources. Commensurate with this observation, we found that Stp1 controls a very limited set of genes, while Stp2 has a much more extensive regulon that is partly dependent on the Ssy1 amino acid sensor (amino acid uptake and catabolism) and partly Ssy1 independent (genes associated with filamentous growth, including the regulators UME6 and SFL2). The ssy1Δ/Δ and stp2Δ/Δ mutants showed reduced fitness in a gastrointestinal (GI) colonization model, yet induced greater damage to epithelial cells and macrophages in a manner that was highly dependent on the growth status of the fungal cells. Surprisingly, the stp1Δ/Δ mutant was better able to colonize the gut but the mutation had no effect on host cell damage. Thus, proper protein and amino acid utilization are both required for normal host interaction and are controlled by an interrelated network that includes Stp1 and Stp2.


mSphere ◽  
2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Jinglin L. Xie ◽  
Teresa R. O’Meara ◽  
Elizabeth J. Polvi ◽  
Nicole Robbins ◽  
Leah E. Cowen

ABSTRACT The impact of fungal pathogens on human health is devastating. One of the most pervasive fungal pathogens is Candida albicans, which kills ~40% of people suffering from bloodstream infections. Treatment of these infections is extremely difficult, as fungi are closely related to humans, and there are limited drugs that kill the fungus without host toxicity. The capacity of C. albicans to transition between yeast and filamentous forms is a key virulence trait. Thus, understanding the genetic pathways that regulate morphogenesis could provide novel therapeutic targets to treat C. albicans infections. Here, we establish the small molecule staurosporine as an inducer of filamentous growth. We unveil distinct regulatory circuitry required for staurosporine-induced filamentation that appears to be unique to this filament-inducing cue. Thus, this work highlights the fact that small molecules, such as staurosporine, can improve our understanding of the pathways required for key virulence programs, which may lead to the development of novel therapeutics. Protein kinases are key regulators of signal transduction pathways that participate in diverse cellular processes. In fungal pathogens, kinases regulate signaling pathways that govern drug resistance, stress adaptation, and pathogenesis. The impact of kinases on the fungal regulatory circuitry has recently garnered considerable attention in the opportunistic fungal pathogen Candida albicans, which is a leading cause of human morbidity and mortality. Complex regulatory circuitry governs the C. albicans morphogenetic transition between yeast and filamentous growth, which is a key virulence trait. Here, we report that staurosporine, a promiscuous kinase inhibitor that abrogates fungal drug resistance, also influences C. albicans morphogenesis by inducing filamentation in the absence of any other inducing cue. We further establish that staurosporine exerts its effect via the adenylyl cyclase Cyr1 and the cyclic AMP (cAMP)-dependent protein kinase A (PKA). Strikingly, filamentation induced by staurosporine does not require the known upstream regulators of Cyr1, Ras1 or Pkc1, or effectors downstream of PKA, including Efg1. We further demonstrate that Cyr1 is capable of activating PKA to enable filamentation in response to staurosporine through a mechanism that does not require degradation of the transcriptional repressor Nrg1. We establish that staurosporine-induced filamentation is accompanied by a defect in septin ring formation, implicating cell cycle kinases as potential staurosporine targets underpinning this cellular response. Thus, we establish staurosporine as a chemical probe to elucidate the architecture of cellular signaling governing fungal morphogenesis and highlight the existence of novel circuitry through which the Cyr1 and PKA govern a key virulence trait. IMPORTANCE The impact of fungal pathogens on human health is devastating. One of the most pervasive fungal pathogens is Candida albicans, which kills ~40% of people suffering from bloodstream infections. Treatment of these infections is extremely difficult, as fungi are closely related to humans, and there are limited drugs that kill the fungus without host toxicity. The capacity of C. albicans to transition between yeast and filamentous forms is a key virulence trait. Thus, understanding the genetic pathways that regulate morphogenesis could provide novel therapeutic targets to treat C. albicans infections. Here, we establish the small molecule staurosporine as an inducer of filamentous growth. We unveil distinct regulatory circuitry required for staurosporine-induced filamentation that appears to be unique to this filament-inducing cue. Thus, this work highlights the fact that small molecules, such as staurosporine, can improve our understanding of the pathways required for key virulence programs, which may lead to the development of novel therapeutics.


2021 ◽  
Vol 3 (12) ◽  
Author(s):  
Enrico Garbe ◽  
Pedro Miramon ◽  
Franziska Gerwien ◽  
Michael Lorenz ◽  
Slavena Vylkova

The tight association of Candida albicans with the human host has driven the evolution of mechanisms that permit metabolic flexibility. Amino acids, present in free form or peptide bound, are an abundant carbon and nitrogen source in many host niches. Further,the capacity to sense and utilize certain amino acids, like proline, is directly linked to virulence. The C. albicans genome encodes for at least 24 amino acid permeases (AAPs), highlighting the importance of flexible amino acid uptake for fungal growth and virulence. Although the substrate specificity and role of certain AAPs has been investigated, a comprehensive characterization was missing. Therefore, we assembled a library of AAP deletion strains, which was tested for resistance to toxic amino acid analogs. Most striking was the specific resistance of gnp2Δ to the proline analog 3,4-dehydroproline. Subsequent tests validated that Gnp2 is a specific proline permease in C. albicans, which is contrary to the model yeast Saccharomyces cerevisiae where proline transport is mediated by four permeases. Furthermore, the induction of GNP2 appears to be independent of the SPS (Ssy1-Ptr3-Ssy5) regulatory pathway that controls proline utilization in the model yeast, pointing towards rewired proline uptake in C. albicans. Additionally, strains lacking GNP2were unable to respond to proline-induced filamentation, displayed decreased cytotoxicity to macrophages and showed increased sensitivity to oxidative stress, underlining the importance of proline uptake for fungal virulence. Taken together, the role of Gnp2-mediated proline uptake illustrates the importance of metabolism-driven virulence in C. albicans.


2015 ◽  
Vol 197 (16) ◽  
pp. 2721-2730 ◽  
Author(s):  
Leticia Escudero ◽  
Vicente Mariscal ◽  
Enrique Flores

ABSTRACTIn the diazotrophic filaments of heterocyst-forming cyanobacteria, two different cell types, the CO2-fixing vegetative cells and the N2-fixing heterocysts, exchange nutrients, including some amino acids. In the model organismAnabaenasp. strain PCC 7120, the SepJ protein, composed of periplasmic and integral membrane (permease) sections, is located at the intercellular septa joining adjacent cells in the filament. The unicellular cyanobacteriumSynechococcus elongatusstrain PCC 7942 bears a gene,Synpcc7942_1024(here designateddmeA), encoding a permease homologous to the SepJ permease domain.Synechococcusstrains lackingdmeAor lackingdmeAand expressingAnabaenasepJwere constructed. TheSynechococcusdmeAmutant showed a significant 22 to 32% decrease in the uptake of aspartate, glutamate, and glutamine, a phenotype that could be partially complemented byAnabaenasepJ.Synechococcusmutants of an ATP-binding-cassette (ABC)-type transporter for polar amino acids showed >98% decreased uptake of glutamate irrespective of the presence ofdmeAorAnabaenasepJin the same strain. Thus,SynechococcusDmeA orAnabaenaSepJ is needed to observe full (or close to full) activity of the ABC transporter. AnAnabaenasepJdeletion mutant was significantly impaired in glutamate and aspartate uptake, which also in this cyanobacterium requires the activity of an ABC-type transporter for polar amino acids. SepJ appears therefore to generally stimulate the activity of cyanobacterial ABC-type transporters for polar amino acids. Conversely, anAnabaenamutant of three ABC-type transporters for amino acids was impaired in the intercellular transfer of 5-carboxyfluorescein, a SepJ-related property. Our results unravel possible functional interactions in transport elements important for diazotrophic growth.IMPORTANCEMembrane transporters are essential for many aspects of cellular life, from uptake and export of substances in unicellular organisms to intercellular molecular exchange in multicellular organisms. Heterocyst-forming cyanobacteria such asAnabaenarepresent a unique case of multicellularity, in which two cell types exchange nutrients and regulators. The SepJ protein located at the intercellular septa in the filaments ofAnabaenacontains a permease domain of the drug/metabolite transporter (DMT) superfamily that somehow contributes to intercellular molecular transfer. In this work, we have found that SepJ stimulates the activity of a polar amino acid uptake transporter of the ATP-binding-cassette (ABC) superfamily, which could itself affect an intercellular transfer activity related to SepJ, thus unraveling possible functional interactions between these different transporters.


mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Yang-Nim Park ◽  
Kayla Conway ◽  
Thomas P. Conway ◽  
Karla J. Daniels ◽  
David R. Soll

ABSTRACTCandida albicansremains the most pervasive fungal pathogen colonizing humans. The majority of isolates from hosts are heterozygous at the mating type locus (MTLa/α), and a third of these have recently been shown to be capable of switching to the opaque phenotype. Here we have investigated the roles of two transcription factors (TFs) Sfl2 and Efg1, in repressing switching ina/α strains. Deleting either gene results in the capacity ofa/α cells to switch to opaque en masse under facilitating environmental conditions, which includeN-acetylglucosamine (GlcNAc) as the carbon source, physiological temperature (37°C), and high CO2(5%). These conditions are similar to those in the host. Our results further reveal that while glucose is a repressor ofsfl2Δ andefg1Δ switching, GlcNAc is an inducer. Finally, we show that when GlcNAc is the carbon source, and the temperature is low (25°C), theefg1Δ mutants, but not thesfl2Δ mutants, form a tiny, elongate cell, which differentiates into an opaque cell when transferred to conditions optimal fora/α switching. These results demonstrate that at least two TFs, Sfl2 and Efg1, repress switching ina/α cells and thata/α strains with either ansfl2Δ orefg1Δ mutation can switch en masse but only under physiological conditions. The role of opaquea/α cells in commensalism and pathogenesis must, therefore, be investigated.IMPORTANCEMore than 95% ofCandida albicansstrains isolated from humans areMTLa/α, and approximately a third of these can undergo the white-to-opaque transition. Therefore, besides being a requirement forMTL-homozygous strains to mate, the opaque phenotype very likely plays a role in the commensalism and pathogenesis of nonmating,a/α populations colonizing humans.


mSphere ◽  
2016 ◽  
Vol 1 (6) ◽  
Author(s):  
Lucie Kraidlova ◽  
Sanne Schrevens ◽  
Hélène Tournu ◽  
Griet Van Zeebroeck ◽  
Hana Sychrova ◽  
...  

ABSTRACT Candida albicans is a commensal organism that can thrive in many niches in its human host. The environmental conditions at these different niches differ quite a bit, and this fungus must be able to sense these changes and adapt its metabolism to them. Apart from glucose and other sugars, the uptake of amino acids is very important. This is underscored by the fact that the C. albicans genome encodes 6 orthologues of the Saccharomyces. cerevisiae general amino acid permease Gap1 and many other amino acid transporters. In this work, we characterize these six permeases and we show that C. albicans Gap2 is the functional orthologue of ScGap1 and that C. albicans Gap4 is an orthologue of ScSam3, an S-adenosylmethionine (SAM) transporter. Furthermore, we show that Gap4 is required for SAM-induced morphogenesis, an important virulence factor of C. albicans. Amino acids are key sources of nitrogen for growth of Candida albicans. In order to detect and take up these amino acids from a broad range of different and changing nitrogen sources inside the host, this fungus must be able to adapt via its expression of genes for amino acid uptake and further metabolism. We analyzed six C. albicans putative general amino acid permeases based on their homology to the Saccharomyces cerevisiae Gap1 general amino acid permease. We generated single- and multiple-deletion strains and found that, based on growth assays and transcriptional or posttranscriptional regulation, Gap2 is the functional orthologue to ScGap1, with broad substrate specificity. Expression analysis showed that expression of all GAP genes is under control of the Csy1 amino acid sensor, which is different from the situation in S. cerevisiae, where the expression of ScGAP1 is not regulated by Ssy1. We show that Gap4 is the functional orthologue of ScSam3, the only S-adenosylmethionine (SAM) transporter in S. cerevisiae, and we report that Gap4 is required for SAM-induced morphogenesis. IMPORTANCE Candida albicans is a commensal organism that can thrive in many niches in its human host. The environmental conditions at these different niches differ quite a bit, and this fungus must be able to sense these changes and adapt its metabolism to them. Apart from glucose and other sugars, the uptake of amino acids is very important. This is underscored by the fact that the C. albicans genome encodes 6 orthologues of the Saccharomyces. cerevisiae general amino acid permease Gap1 and many other amino acid transporters. In this work, we characterize these six permeases and we show that C. albicans Gap2 is the functional orthologue of ScGap1 and that C. albicans Gap4 is an orthologue of ScSam3, an S-adenosylmethionine (SAM) transporter. Furthermore, we show that Gap4 is required for SAM-induced morphogenesis, an important virulence factor of C. albicans.


2016 ◽  
Vol 85 (2) ◽  
Author(s):  
Slavena Vylkova ◽  
Michael C. Lorenz

ABSTRACT The interaction of Candida albicans with the innate immune system is the key determinant of the pathogen/commensal balance and has selected for adaptations that facilitate the utilization of nutrients commonly found within the host, including proteins and amino acids; many of the catabolic pathways needed to assimilate these compounds are required for persistence in the host. We have shown that C. albicans co-opts amino acid catabolism to generate and excrete ammonia, which raises the extracellular pH, both in vitro and in vivo and induces hyphal morphogenesis. Mutants defective in the uptake or utilization of amino acids, such as those lacking STP2, a transcription factor that regulates the expression of amino acid permeases, are impaired in multiple aspects of fungus-macrophage interactions resulting from an inability to neutralize the phagosome. Here we identified a novel role in amino acid utilization for Ahr1p, a transcription factor previously implicated in regulation of adherence and hyphal morphogenesis. Mutants lacking AHR1 were defective in growth, alkalinization, and ammonia release on amino acid-rich media, similar to stp2Δ and ahr1Δ stp2Δ cells, and occupied more acidic phagosomes. Notably, ahr1Δ and stp2Δ strains did not induce pyroptosis, as measured by caspase-1-dependent interleukin-1β release, though this phenotype could be suppressed by pharmacological neutralization of the phagosome. Altogether, we show that C. albicans-driven neutralization of the phagosome promotes hyphal morphogenesis, sufficient for induction of caspase-1-mediated macrophage lysis.


2005 ◽  
Vol 25 (21) ◽  
pp. 9435-9446 ◽  
Author(s):  
Paula Martínez ◽  
Per O. Ljungdahl

ABSTRACT Candida albicans possesses a plasma membrane-localized sensor of extracellular amino acids. Here, we show that in response to amino acids, this sensor induces the proteolytic processing of two latent transcription factors, Stp1 and Stp2. Processing removes negative regulatory motifs present in the N-terminal domains of these factors. Strikingly, Stp1 and Stp2 exhibit a clear dichotomy in the genes they transactivate. The shorter active form of Stp2 activates genes required for amino acid uptake. The processed form of Stp1 activates genes required for degradation of extracellular protein and uptake of peptides, and cells lacking Stp1 do not express the secreted aspartyl protease SAP2 or the oligopeptide transporter OPT1. Consequently, stp1 null mutants are unable to grow on media with protein as the sole nitrogen source. Cells expressing the STP1* allele that encodes a protein lacking the inhibitory N-terminal domain constitutively express SAP2 and OPT1 even in the absence of extracellular proteins or peptides. Also, we show that Stp1 levels, but not Stp2 levels, are downregulated in the presence of millimolar concentrations of extracellular amino acids. These results define the hierarchy of regulatory mechanisms that differentially control two discrete pathways for the assimilation of nitrogen.


Pathogens ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 5
Author(s):  
Fitz Gerald S. Silao ◽  
Per O. Ljungdahl

Nutrient uptake is essential for cellular life and the capacity to perceive extracellular nutrients is critical for coordinating their uptake and metabolism. Commensal fungal pathogens, e.g., Candida albicans, have evolved in close association with human hosts and are well-adapted to using diverse nutrients found in discrete host niches. Human cells that cannot synthesize all amino acids require the uptake of the “essential amino acids” to remain viable. Consistently, high levels of amino acids circulate in the blood. Host proteins are rich sources of amino acids but their use depends on proteases to cleave them into smaller peptides and free amino acids. C. albicans responds to extracellular amino acids by pleiotropically enhancing their uptake and derive energy from their catabolism to power opportunistic virulent growth. Studies using Saccharomyces cerevisiae have established paradigms to understand metabolic processes in C. albicans; however, fundamental differences exist. The advent of CRISPR/Cas9-based methods facilitate genetic analysis in C. albicans, and state-of-the-art molecular biological techniques are being applied to directly examine growth requirements in vivo and in situ in infected hosts. The combination of divergent approaches can illuminate the biological roles of individual cellular components. Here we discuss recent findings regarding nutrient sensing with a focus on amino acid uptake and metabolism, processes that underlie the virulence of C. albicans.


Sign in / Sign up

Export Citation Format

Share Document