scholarly journals When Is a Microbial Culture “Pure”? Persistent Cryptic Contaminant Escapes Detection Even with Deep Genome Sequencing

mBio ◽  
2013 ◽  
Vol 4 (2) ◽  
Author(s):  
Pravin Malla Shrestha ◽  
Kelly P. Nevin ◽  
Minita Shrestha ◽  
Derek R. Lovley

ABSTRACTGeobacter sulfurreducensstrain KN400 was recovered in previous studies in which a culture of the DL1 strain ofG. sulfurreducensserved as the inoculum in investigations of microbial current production at low anode potentials (−400 mV versus Ag/AgCl). Differences in the genome sequences of KN400 and DL1 were too great to have arisen from adaptive evolution during growth on the anode. Previous deep sequencing (80-fold coverage) of the DL1 culture failed to detect sequences specific to KN400, suggesting that KN400 was an external contaminant inadvertently introduced into the anode culturing system. In order to evaluate this further, a portion of the gene for OmcS, ac-type cytochrome that both KN400 and DL1 possess, was amplified from the DL1 culture. HiSeq-2000 Illumina sequencing of the PCR product detected the KN400 sequence, which differs from the DL1 sequence at 14 bp, at a frequency of ca. 1 in 105copies of the DL1 sequence. A similar low frequency of KN400 was detected with quantitative PCR of a KN400-specific gene. KN400 persisted at this frequency after intensive restreaking of isolated colonies from the DL1 culture. However, a culture in which KN400 could no longer be detected was obtained by serial dilution to extinction in liquid medium. The KN400-free culture could not grow on an anode poised at −400 mV. Thus, KN400 cryptically persisted in the culture dominated by DL1 for more than a decade, undetected by even deep whole-genome sequencing, and was only fortuitously uncovered by the unnatural selection pressure of growth on a low-potential electrode.IMPORTANCERepeated streaking of isolated colonies on solidified medium remains a common strategy for obtaining pure cultures, especially of difficult-to-cultivate microorganisms such as strict anaerobes. The results presented here demonstrate that verifying the purity of cultures obtained in this manner may be difficult because extremely rare variants can persist, undetectable with even deep genomic DNA sequencing. The only way to ensure that a culture is pure is to cultivate it from an initial single cell, which may be technically difficult for many environmentally significant microbes.

2012 ◽  
Vol 78 (18) ◽  
pp. 6630-6636 ◽  
Author(s):  
Jun Yan ◽  
Kirsti M. Ritalahti ◽  
Darlene D. Wagner ◽  
Frank E. Löffler

ABSTRACTDehalococcoides mccartyistrains conserve energy from reductive dechlorination reactions catalyzed by corrinoid-dependent reductive dehalogenase enzyme systems.Dehalococcoideslacks the ability forde novocorrinoid synthesis, and pure cultures require the addition of cyanocobalamin (vitamin B12) for growth. In contrast,Geobacter lovleyi, which dechlorinates tetrachloroethene tocis-1,2-dichloroethene (cis-DCE), and the nondechlorinating speciesGeobacter sulfurreducenshave complete sets of cobamide biosynthesis genes and produced 12.9 ± 2.4 and 24.2 ± 5.8 ng of extracellular cobamide per liter of culture suspension, respectively, during growth with acetate and fumarate in a completely synthetic medium.G. lovleyi-D. mccartyistrain BAV1 or strain FL2 cocultures provided evidence for interspecies corrinoid transfer, andcis-DCE was dechlorinated to vinyl chloride and ethene concomitant withDehalococcoidesgrowth. In contrast, negligible increase inDehalococcoides16S rRNA gene copies and insignificant dechlorination occurred inG. sulfurreducens-D. mccartyistrain BAV1 or strain FL2 cocultures. Apparently,G. lovleyiproduces a cobamide that complementsDehalococcoides' nutritional requirements, whereasG. sulfurreducensdoes not. Interestingly,Dehalococcoidesdechlorination activity and growth could be restored inG. sulfurreducens-Dehalococcoidescocultures by adding 10 μM 5′,6′-dimethylbenzimidazole. Observations made with theG. sulfurreducens-Dehalococcoidescocultures suggest that the exchange of the lower ligand generated a cobalamin, which supportedDehalococcoidesactivity. These findings have implications forin situbioremediation and suggest that the corrinoid metabolism ofDehalococcoidesmust be understood to faithfully predict, and possibly enhance, reductive dechlorination activities.


2019 ◽  
Vol 63 (4) ◽  
Author(s):  
Max R. O’Donnell ◽  
Michelle H. Larsen ◽  
Tyler S. Brown ◽  
Paras Jain ◽  
Vanisha Munsamy ◽  
...  

ABSTRACTA critical gap in tuberculosis (TB) treatment is detection of emergent drug resistance. We hypothesized that advanced phenotyping with whole-genome sequencing (WGS) will detect low-frequencyMycobacterium tuberculosisdrug resistance. We assessed a reporter mycobacteriophage (Φ2GFP10)in vitroto detect drug-resistant subpopulations and predictM. tuberculosisbactericidal activity in this pilot study. Subsequently, we prospectively studied 20 TB patients with serial Φ2GFP10, Xpert MTB/RIF, andM. tuberculosisculture through end of treatment. WGS was performed, and single nucleotide polymorphisms (SNPs) were examined to detect mixed infection in selectedM. tuberculosisisolates. ResistantM. tuberculosisisolates were detected at 1:100,000, and changes in cytometry-gated events were predictive ofin vitroM. tuberculosisbactericidal activity using the Φ2GFP10 assay. Emergent drug resistance was detected in one patient by Φ2GFP10 at 3 weeks but not by conventional testing (M. tuberculosisculture and GeneXpert). WGS revealed a phylogeographically distinct extensively drug-resistant tuberculosis (XDR-TB) genome, identical to an XDR-TB isolate from the patient’s spouse. Variant lineage-specific SNPs were present early, suggesting mixed infection as the etiology of emergent resistance with temporal trends providing evidence for selection during treatment. Φ2GFP10 can detect low-frequency drug-resistantM. tuberculosisand with WGS characterize emergentM. tuberculosisresistance. In areas of high TB transmission and drug resistance, rapid screening for heteroresistance should be considered.


2012 ◽  
Vol 78 (9) ◽  
pp. 3484-3487 ◽  
Author(s):  
Youpeng Qu ◽  
Yujie Feng ◽  
Xin Wang ◽  
Bruce E. Logan

ABSTRACTMicrobial fuel cells often produce more electrical power with mixed cultures than with pure cultures. Here, we show that a coculture of a nonexoelectrogen (Escherichia coli) andGeobacter sulfurreducensimproved system performance relative to that of a pure culture of the exoelectrogen due to the consumption of oxygen leaking into the reactor.


mBio ◽  
2013 ◽  
Vol 4 (3) ◽  
Author(s):  
Jonathan P. Badalamenti ◽  
Rosa Krajmalnik-Brown ◽  
César I. Torres

ABSTRACTAnode-respiring bacteria (ARB) generate electric current in microbial electrochemical cells (MXCs) by channeling electrons from the oxidation of organic substrates to an electrode. Production of high current densities by monocultures in MXCs has resulted almost exclusively from the activity ofGeobacter sulfurreducens, a neutrophilic freshwater Fe(III)-reducing bacterium and the highest-current-producing member documented for theGeobacteraceaefamily of theDeltaproteobacteria. Here we report high current densities generated by haloalkaliphilicGeoalkalibacterspp., thus broadening the capability for high anode respiration rates by including other genera within theGeobacteraceae. In this study, acetate-fed pure cultures of two relatedGeoalkalibacterspp. produced current densities of 5.0 to 8.3 and 2.4 to 3.3 A m−2under alkaline (pH 9.3) and saline (1.7% NaCl) conditions, respectively. Chronoamperometric studies of halophilicGlk. subterraneusDSM 23483 and alkaliphilicGlk. ferrihydriticusDSM 17813 suggested that cells performed long-range electron transfer through electrode-attached biofilms and not through soluble electron shuttles.Glk. ferrihydriticusalso oxidized ethanol directly to produce current, with maximum current densities of 5.7 to 7.1 A m−2and coulombic efficiencies of 84 to 95%. Cyclic voltammetry (CV) elicited a sigmoidal response with characteristic onset, midpoint, and saturation potentials, while CV performed in the absence of an electron donor suggested the involvement of redox molecules in the biofilm that were limited by diffusion. These results matched those previously reported for actively respiringGb. sulfurreducensbiofilms producing similar current densities (~5 to 9 A m−2).IMPORTANCEThis study establishes the highest current densities ever achieved by pure cultures of anode-respiring bacteria (ARB) under alkaline and saline conditions in microbial electrochemical cells (MXCs) and provides the first electrochemical characterization of the genusGeoalkalibacter. Production of high current densities among theGeobacteraceaeis no longer exclusive toGeobacter sulfurreducens, suggesting greater versatility for this family in fundamental and applied microbial electrochemical cell (MXC) research than previously considered. Additionally, this work raises the possibility that different members of theGeobacteraceaehave conserved molecular mechanisms governing respiratory extracellular electron transfer to electrodes. Thus, the capacity for high current generation may exist in other uncultivated members of this family. Advancement of MXC technology for practical uses must rely on an expanded suite of ARB capable of using different electron donors and producing high current densities under various conditions.Geoalkalibacterspp. can potentially broaden the practical capabilities of MXCs to include energy generation and waste treatment under expanded ranges of salinity and pH.


2020 ◽  
Vol 58 (4) ◽  
Author(s):  
Ellen N. Kersh ◽  
Cau D. Pham ◽  
John R. Papp ◽  
Robert Myers ◽  
Richard Steece ◽  
...  

ABSTRACT U.S. gonorrhea rates are rising, and antibiotic-resistant Neisseria gonorrhoeae (AR-Ng) is an urgent public health threat. Since implementation of nucleic acid amplification tests for N. gonorrhoeae identification, the capacity for culturing N. gonorrhoeae in the United States has declined, along with the ability to perform culture-based antimicrobial susceptibility testing (AST). Yet AST is critical for detecting and monitoring AR-Ng. In 2016, the CDC established the Antibiotic Resistance Laboratory Network (AR Lab Network) to shore up the national capacity for detecting several resistance threats including N. gonorrhoeae. AR-Ng testing, a subactivity of the CDC’s AR Lab Network, is performed in a tiered network of approximately 35 local laboratories, four regional laboratories (state public health laboratories in Maryland, Tennessee, Texas, and Washington), and the CDC’s national reference laboratory. Local laboratories receive specimens from approximately 60 clinics associated with the Gonococcal Isolate Surveillance Project (GISP), enhanced GISP (eGISP), and the program Strengthening the U.S. Response to Resistant Gonorrhea (SURRG). They isolate and ship up to 20,000 isolates to regional laboratories for culture-based agar dilution AST with seven antibiotics and for whole-genome sequencing of up to 5,000 isolates. The CDC further examines concerning isolates and monitors genetic AR markers. During 2017 and 2018, the network tested 8,214 and 8,628 N. gonorrhoeae isolates, respectively, and the CDC received 531 and 646 concerning isolates and 605 and 3,159 sequences, respectively. In summary, the AR Lab Network supported the laboratory capacity for N. gonorrhoeae AST and associated genetic marker detection, expanding preexisting notification and analysis systems for resistance detection. Continued, robust AST and genomic capacity can help inform national public health monitoring and intervention.


2018 ◽  
Vol 2 (3) ◽  
pp. 247-258
Author(s):  
Zhishuo Liu ◽  
Qianhui Shen ◽  
Jingmiao Ma ◽  
Ziqi Dong

Purpose This paper aims to extract the comment targets in Chinese online shopping platform. Design/methodology/approach The authors first collect the comment texts, word segmentation, part-of-speech (POS) tagging and extracted feature words twice. Then they cluster the evaluation sentence and find the association rules between the evaluation words and the evaluation object. At the same time, they establish the association rule table. Finally, the authors can mine the evaluation object of comment sentence according to the evaluation word and the association rule table. At last, they obtain comment data from Taobao and demonstrate that the method proposed in this paper is effective by experiment. Findings The extracting comment target method the authors proposed in this paper is effective. Research limitations/implications First, the study object of extracting implicit features is review clauses, and not considering the context information, which may affect the accuracy of the feature excavation to a certain degree. Second, when extracting feature words, the low-frequency feature words are not considered, but some low-frequency feature words also contain effective information. Practical implications Because of the mass online reviews data, reading every comment one by one is impossible. Therefore, it is important that research on handling product comments and present useful or interest comments for clients. Originality/value The extracting comment target method the authors proposed in this paper is effective.


Author(s):  
Yifan Zhang ◽  
Weiwei Jiang ◽  
Jun Xu ◽  
Na Wu ◽  
Yang Wang ◽  
...  

ObjectiveThe gut microbiota is associated with nonalcoholic fatty liver disease (NAFLD). We isolated the Escherichia coli strain NF73-1 from the intestines of a NASH patient and then investigated its effect and underlying mechanism.Methods16S ribosomal RNA (16S rRNA) amplicon sequencing was used to detect bacterial profiles in healthy controls, NAFLD patients and NASH patients. Highly enriched E. coli strains were cultured and isolated from NASH patients. Whole-genome sequencing and comparative genomics were performed to investigate gene expression. Depending on the diet, male C57BL/6J mice were further grouped in normal diet (ND) and high-fat diet (HFD) groups. To avoid disturbing the bacterial microbiota, some of the ND and HFD mice were grouped as “bacteria-depleted” mice and treated with a cocktail of broad-spectrum antibiotic complex (ABX) from the 8th to 10th week. Then, E. coli NF73-1, the bacterial strain isolated from NASH patients, was administered transgastrically for 6 weeks to investigate its effect and mechanism in the pathogenic progression of NAFLD.ResultsThe relative abundance of Escherichia increased significantly in the mucosa of NAFLD patients, especially NASH patients. The results from whole-genome sequencing and comparative genomics showed a specific gene expression profile in E. coli strain NF73-1, which was isolated from the intestinal mucosa of NASH patients. E. coli NF73-1 accelerates NAFLD independently. Only in the HFD-NF73-1 and HFD-ABX-NF73-1 groups were EGFP-labeled E. coli NF73-1 detected in the liver and intestine. Subsequently, translocation of E. coli NF73-1 into the liver led to an increase in hepatic M1 macrophages via the TLR2/NLRP3 pathway. Hepatic M1 macrophages induced by E. coli NF73-1 activated mTOR-S6K1-SREBP-1/PPAR-α signaling, causing a metabolic switch from triglyceride oxidation toward triglyceride synthesis in NAFLD mice.ConclusionsE. coli NF73-1 is a critical trigger in the progression of NAFLD. E. coli NF73-1 might be a specific strain for NAFLD patients.


2015 ◽  
Vol 53 (4) ◽  
pp. 1144-1148 ◽  
Author(s):  
Evan McRobb ◽  
Derek S. Sarovich ◽  
Erin P. Price ◽  
Mirjam Kaestli ◽  
Mark Mayo ◽  
...  

Melioidosis, a disease of public health importance in Southeast Asia and northern Australia, is caused by the Gram-negative soil bacillusBurkholderia pseudomallei. Melioidosis is typically acquired through environmental exposure, and case clusters are rare, even in regions where the disease is endemic.B. pseudomalleiis classed as a tier 1 select agent by the Centers for Disease Control and Prevention; from a biodefense perspective, source attribution is vital in an outbreak scenario to rule out a deliberate release. Two cases of melioidosis within a 3-month period at a residence in rural northern Australia prompted an investigation to determine the source of exposure.B. pseudomalleiisolates from the property's groundwater supply matched the multilocus sequence type of the clinical isolates. Whole-genome sequencing confirmed the water supply as the probable source of infection in both cases, with the clinical isolates differing from the likely infecting environmental strain by just one single nucleotide polymorphism (SNP) each. For the first time, we report a phylogenetic analysis of genomewide insertion/deletion (indel) data, an approach conventionally viewed as problematic due to high mutation rates and homoplasy. Our whole-genome indel analysis was concordant with the SNP phylogeny, and these two combined data sets provided greater resolution and a better fit with our epidemiological chronology of events. Collectively, this investigation represents a highly accurate account of source attribution in a melioidosis outbreak and gives further insight into a frequently overlooked reservoir ofB. pseudomallei. Our methods and findings have important implications for outbreak source tracing of this bacterium and other highly recombinogenic pathogens.


2014 ◽  
Vol 81 (1) ◽  
pp. 166-176 ◽  
Author(s):  
Francesca Bottacini ◽  
Mary O'Connell Motherway ◽  
Eoghan Casey ◽  
Brian McDonnell ◽  
Jennifer Mahony ◽  
...  

ABSTRACTBifidobacterium breveis a common and sometimes very abundant inhabitant of the human gut. Genome sequencing ofB. breveJCM 7017 revealed the presence of an extrachromosomal element, designated pMP7017 consisting of >190 kb, thus representing the first reported bifidobacterial megaplasmid.In silicocharacterization of this element revealed several genomic features supporting a stable establishment of the megaplasmid in its host, illustrated by predicted CRISPR-Cas functions that are known to protect the host against intrusion of foreign DNA. Interestingly, pMP7017 is also predicted to encode a conjugative DNA transfer apparatus and, consistent with this notion, we demonstrate here the conjugal transfer of pMP7017 to representative strains ofB. breveandB. longumsubsp.longum. We also demonstrate the presence of a megaplasmid with homology to pMP7017 in threeB. longumsubsp.longumstrains.


Sign in / Sign up

Export Citation Format

Share Document