scholarly journals Expanding U.S. Laboratory Capacity for Neisseria gonorrhoeae Antimicrobial Susceptibility Testing and Whole-Genome Sequencing through the CDC's Antibiotic Resistance Laboratory Network

2020 ◽  
Vol 58 (4) ◽  
Author(s):  
Ellen N. Kersh ◽  
Cau D. Pham ◽  
John R. Papp ◽  
Robert Myers ◽  
Richard Steece ◽  
...  

ABSTRACT U.S. gonorrhea rates are rising, and antibiotic-resistant Neisseria gonorrhoeae (AR-Ng) is an urgent public health threat. Since implementation of nucleic acid amplification tests for N. gonorrhoeae identification, the capacity for culturing N. gonorrhoeae in the United States has declined, along with the ability to perform culture-based antimicrobial susceptibility testing (AST). Yet AST is critical for detecting and monitoring AR-Ng. In 2016, the CDC established the Antibiotic Resistance Laboratory Network (AR Lab Network) to shore up the national capacity for detecting several resistance threats including N. gonorrhoeae. AR-Ng testing, a subactivity of the CDC’s AR Lab Network, is performed in a tiered network of approximately 35 local laboratories, four regional laboratories (state public health laboratories in Maryland, Tennessee, Texas, and Washington), and the CDC’s national reference laboratory. Local laboratories receive specimens from approximately 60 clinics associated with the Gonococcal Isolate Surveillance Project (GISP), enhanced GISP (eGISP), and the program Strengthening the U.S. Response to Resistant Gonorrhea (SURRG). They isolate and ship up to 20,000 isolates to regional laboratories for culture-based agar dilution AST with seven antibiotics and for whole-genome sequencing of up to 5,000 isolates. The CDC further examines concerning isolates and monitors genetic AR markers. During 2017 and 2018, the network tested 8,214 and 8,628 N. gonorrhoeae isolates, respectively, and the CDC received 531 and 646 concerning isolates and 605 and 3,159 sequences, respectively. In summary, the AR Lab Network supported the laboratory capacity for N. gonorrhoeae AST and associated genetic marker detection, expanding preexisting notification and analysis systems for resistance detection. Continued, robust AST and genomic capacity can help inform national public health monitoring and intervention.

2020 ◽  
Vol 64 (9) ◽  
Author(s):  
Nidhi R. Parmar ◽  
Reema Singh ◽  
Irene Martin ◽  
Sumudu R. Perera ◽  
Walter Demczuk ◽  
...  

ABSTRACT Whole-genome sequencing was used to identify mutations in antibiotic resistance-conferring genes to compare susceptibility predictions with MICs and to ascertain strain types in 99 isolates of Neisseria gonorrhoeae. Genotypes associated with susceptibility, as well as MIC creep or emerging resistance, were noted. Phylogenomic analysis revealed three distinctive clades and putative gonococcal transmission linkages involving a tetracycline-resistant N. gonorrhoeae outbreak and the clonal spread of susceptible isolates in men.


2018 ◽  
Vol 56 (11) ◽  
Author(s):  
David R. Greig ◽  
Ulf Schaefer ◽  
Sophie Octavia ◽  
Ebony Hunter ◽  
Marie A. Chattaway ◽  
...  

ABSTRACT Epidemiological and microbiological data on Vibrio cholerae strains isolated between April 2004 and March 2018 (n = 836) and held at the Public Health England culture archive were reviewed. The traditional biochemical species identification and serological typing results were compared with the genome-derived species identification and serotype for a subset of isolates (n = 152). Of the 836 isolates, 750 (89.7%) were from a fecal specimen, 206 (24.6%) belonged to serogroup O1, and 7 (0.8%) were serogroup O139; 792 (94.7%) isolates were from patients reporting recent travel abroad, most commonly to India (n = 209) and Pakistan (n = 104). Of the 152 V. cholerae isolates identified by use of kmer, 149 (98.1%) were concordant with those identified using the traditional biochemical approach. Traditional serotyping results were 100% concordant with those of the whole-genome sequencing (WGS) analysis for the identification of serogroups O1 and O139 and classical and El Tor biotypes. ctxA was detected in all isolates of V. cholerae O1 El Tor and O139 belonging to sequence type 69 (ST69) and in V. cholerae O1 classical variants belonging to ST73. A phylogeny of isolates belonging to ST69 from U.K. travelers clustered geographically, with isolates from India and Pakistan located on separate branches. Moving forward, WGS data from U.K. travelers will contribute to global surveillance programs and the monitoring of emerging threats to public health and the global dissemination of pathogenic lineages. At the national level, these WGS data will inform the timely reinforcement of direct public health messaging to travelers and mitigate the impact of imported infections and the associated risks to public health.


2016 ◽  
Vol 60 (11) ◽  
pp. 6962-6964 ◽  
Author(s):  
Claire de Curraize ◽  
Sylvain Kumanski ◽  
Maïté Micaëlo ◽  
Nelly Fournet ◽  
Guy La Ruche ◽  
...  

ABSTRACTTwo extended-spectrum cephalosporin-resistantNeisseria gonorrhoeaeisolates were discovered among 6,340 (0.03%) French isolates between 2010 and 2014. One isolate corresponded to the F89 multidrug-resistantN. gonorrhoeaeisolate harboring apenAmosaic; whole-genome sequencing highlighted an additional R251H substitution in theftsXgene recently involved in cephalosporin resistance. The other, ceftriaxone-resistant isolate (MIC, 0.25 mg/liter) harbored the PBP2 pattern XXXVI plus a P551S substitution and belonged to sequence type ST1579 (multilocus sequence typing [MLST]).


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 443
Author(s):  
Shu-Yuan Li ◽  
Chin-Chuan Kao ◽  
Yu-Cheng Hu ◽  
Chung-Hsu Lai ◽  
Yi-Ping Jiang ◽  
...  

Arthrobacter woluwensis is a Gram-positive, aerobic Actinobacteria that is widely distributed in the environment worldwide. Little is known about A. woluwensis infection and it is commonly mis-identified by culturing with commercial kits. To date, only six cases of bacteremia caused by A. woluwensis have been reported in the literature. Herein, we report a case of Arthrobacter woluwensis bacteremia in an immunocompromised host. In this case report, the results of antimicrobial susceptibility testing showed that this clinical isolate of A. woluwensis is sensitive to vancomycin, teicoplanin, but resistant to penicillin, cephalosporin and ciprofloxacin. Additionally, whole genome sequencing analysis identified common subunits of the urease system.


2021 ◽  
Author(s):  
Thomas J. Maunsell ◽  
Scott Nguyen ◽  
Farid El Garach ◽  
Christine Miossec ◽  
Emmanuel Cuinet ◽  
...  

Antimicrobial resistance (AMR) has increased at an alarming pace in the recent years. Molecular-based methods such as whole genome sequencing (WGS) offer a potential alternative to the conventional labour-intensive methods traditionally used to characterise AMR phenotypes. The aim of this study was to investigate whether WGS could be used as a predictor of AMR in Escherichia coli isolates of bovine origin. Genomes of 143 E. coli cultured from cattle presenting with diarrhoea or mastitis were sequenced on an Illumina MiSeq platform. AMR genes were identified using the ResFinder and AMRFinder databases. Antimicrobial susceptibility testing by disk diffusion was performed on a panel of 10 antibiotics, covering 7 antimicrobial classes. Minimum inhibitory concentration (MIC) measurements were made using the Sensititre plate with 6 antibiotics, covering 5 antimicrobial classes. Correlation between genotype and phenotype was assessed statistically by means of a two-by-two table analysis and Cohen's kappa (κ) test. The overall κ correlation between WGS and disk diffusion was 0.81, indicating a near perfect agreement, and the average positive predicted value was 77.4 %. Correlation for individual antimicrobial compounds varied, with five yielding near perfect agreement (κ = 0.81-1.00; amoxicillin, florfenicol, gentamicin, tetracycline and trimethoprim-sulfamethoxazole), one showing substantial agreement (κ = 0.65; nalidixic acid), and four showing moderate agreement (κ = 0.41-0.60). The overall κ correlation between WGS and MIC was 0.55 indicating moderate agreement, and the average positive predicted value was 68.6 %. Three antibiotics yielded near perfect agreement (gentamicin, tetracycline and trimethoprim-sulfamethoxazole) and a further three showed fair agreement (κ = 0.21-0.40). WGS is a useful tool that can be used for the prediction of AMR phenotypes, and correlates well with disk diffusion results. MIC measurements may be necessary for antimicrobial compounds with a high proportion of intermediately resistant isolates recorded, such as cephalothin.


2020 ◽  
Author(s):  
Miguel Pinto ◽  
Vítor Borges ◽  
Joana Isidro ◽  
João Carlos Rodrigues ◽  
Luís Vieira ◽  
...  

Neisseria gonorrhoeae , the bacterium responsible for the sexually transmitted disease gonorrhoea, has shown an extraordinary ability to develop antimicrobial resistance (AMR) to multiple classes of antimicrobials. With no available vaccine, managing N. gonorrhoeae infections demands effective preventive measures, antibiotic treatment and epidemiological surveillance. The latter two are progressively being supported by the generation of whole-genome sequencing (WGS) data on behalf of national and international surveillance programmes. In this context, this study aims to perform N. gonorrhoeae clustering into genogroups based on WGS data, for enhanced prospective laboratory surveillance. Particularly, it aims to identify the major circulating WGS-genogroups in Europe and to establish a relationship between these and AMR. Ultimately, it enriches public databases by contributing with WGS data from Portuguese isolates spanning 15 years of surveillance. A total of 3791 carefully inspected N. gonorrhoeae genomes from isolates collected across Europe were analysed using a gene-by-gene approach (i.e. using cgMLST). Analysis of cluster composition and stability allowed the classification of isolates into a two-step hierarchical genogroup level determined by two allelic distance thresholds revealing cluster stability. Genogroup clustering in general agreed with available N. gonorrhoeae typing methods [i.e. MLST (multilocus sequence typing), NG-MAST ( N. gonorrhoeae multi-antigen sequence typing) and PubMLST core-genome groups], highlighting the predominant genogroups circulating in Europe, and revealed that the vast majority of the genogroups present a dominant AMR profile. Additionally, a non-static gene-by-gene approach combined with a more discriminatory threshold for potential epidemiological linkage enabled us to match data with previous reports on outbreaks or transmission chains. In conclusion, this genogroup assignment allows a comprehensive analysis of N. gonorrhoeae genetic diversity and the identification of the WGS-based genogroups circulating in Europe, while facilitating the assessment (and continuous monitoring) of their frequency, geographical dispersion and potential association with specific AMR signatures. This strategy may benefit public-health actions through the prioritization of genogroups to be controlled, the identification of emerging resistance carriage, and the potential facilitation of data sharing and communication.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Tom J. B. de Man ◽  
Joseph D. Lutgring ◽  
David R. Lonsway ◽  
Karen F. Anderson ◽  
Julia A. Kiehlbauch ◽  
...  

ABSTRACTAntimicrobial resistance is a threat to public health globally and leads to an estimated 23,000 deaths annually in the United States alone. Here, we report the genomic characterization of an unusualKlebsiella pneumoniae, nonsusceptible to all 26 antibiotics tested, that was isolated from a U.S. patient. The isolate harbored four known beta-lactamase genes, including plasmid-mediatedblaNDM-1andblaCMY-6, as well as chromosomalblaCTX-M-15andblaSHV-28, which accounted for resistance to all beta-lactams tested. In addition, sequence analysis identified mechanisms that could explain all other reported nonsusceptibility results, including nonsusceptibility to colistin, tigecycline, and chloramphenicol. Two plasmids, IncA/C2 and IncFIB, were closely related to mobile elements described previously and isolated from Gram-negative bacteria from China, Nepal, India, the United States, and Kenya, suggesting possible origins of the isolate and plasmids. This is one of the firstK. pneumoniaeisolates in the United States to have been reported to the Centers for Disease Control and Prevention (CDC) as nonsusceptible to all drugs tested, including all beta-lactams, colistin, and tigecycline.IMPORTANCEAntimicrobial resistance is a major public health threat worldwide. Bacteria that are nonsusceptible or resistant to all antimicrobials available are of major concern to patients and the public because of lack of treatment options and potential for spread. AKlebsiella pneumoniaestrain that was nonsusceptible to all tested antibiotics was isolated from a U.S. patient. Mechanisms that could explain all observed phenotypic antimicrobial resistance phenotypes, including resistance to colistin and beta-lactams, were identified through whole-genome sequencing. The large variety of resistance determinants identified demonstrates the usefulness of whole-genome sequencing for detecting these genes in an outbreak response. Sequencing of isolates with rare and unusual phenotypes can provide information on how these extremely resistant isolates develop, including whether resistance is acquired on mobile elements or accumulated through chromosomal mutations. Moreover, this provides further insight into not only detecting these highly resistant organisms but also preventing their spread.


Sign in / Sign up

Export Citation Format

Share Document