scholarly journals A Novel Environmental Azole Resistance Mutation inAspergillus fumigatusand a Possible Role of Sexual Reproduction in Its Emergence

mBio ◽  
2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Jianhua Zhang ◽  
Eveline Snelders ◽  
Bas J. Zwaan ◽  
Sijmen E. Schoustra ◽  
Jacques F. Meis ◽  
...  

ABSTRACTThis study investigated the dynamics ofAspergillus fumigatusazole-resistant phenotypes in two compost heaps with contrasting azole exposures: azole free and azole exposed. After heat shock, to which sexual but not asexual spores are highly resistant, the azole-free compost yielded 98% (49/50) wild-type and 2% (1/50) azole-resistant isolates, whereas the azole-containing compost yielded 9% (4/45) wild-type and 91% (41/45) resistant isolates. From the latter compost, 80% (36/45) of the isolates contained the TR46/Y121F/T289A genotype, 2% (1/45) harbored the TR46/Y121F/M172I/T289A/G448S genotype, and 9% (4/45) had a novel pan-triazole-resistant mutation (TR463/Y121F/M172I/T289A/G448S) with a triple 46-bp promoter repeat. Subsequent screening of a representative set of clinicalA. fumigatusisolates showed that the novel TR463mutant was already present in samples from three Dutch medical centers collected since 2012. Furthermore, a second new resistance mutation was found in this set that harbored four TR46repeats. Importantly, in the laboratory, we recovered the TR463mutation from a sexual cross between two TR46isolates from the same azole-containing compost, possibly through unequal crossing over between the double tandem repeats (TRs) during meiosis. This possible role of sexual reproduction in the emergence of the mutation was further implicated by the high level of genetic diversity of STR genotypes in the azole-containing compost. Our study confirms that azole resistance mutations continue to emerge in the environment and indicates compost containing azole residues as a possible hot spot. Better insight into the biology of environmental resistance selection is needed to retain the azole class for use in food production and treatment ofAspergillusdiseases.IMPORTANCEComposting of organic matter containing azole residues might be important for resistance development and subsequent spread of resistance mutations inAspergillus fumigatus. In this article, we show the dominance of azole-resistantA. fumigatusin azole-exposed compost and the discovery of a new resistance mutation with clinical relevance. Furthermore, our study indicates that current fungicide application is not sustainable as new resistance mutations continue to emerge, thereby threatening the use of triazoles in medicine. We provide evidence that the sexual part of the fungal life cycle may play a role in the emergence of resistance mutations because under laboratory conditions, we reconstructed the resistance mutation through sexual crossing of two azole-resistantA. fumigatusisolates derived from the same compost heap. Understanding the mechanisms of resistance selection in the environment is needed to design strategies against the accumulation of resistance mutations in order to retain the azole class for crop protection and treatment ofAspergillusdiseases.

2018 ◽  
Vol 4 (3) ◽  
pp. 103 ◽  
Author(s):  
Jochem Buil ◽  
Ferry Hagen ◽  
Anuradha Chowdhary ◽  
Paul Verweij ◽  
Jacques Meis

Azole resistance in Aspergillus fumigatus is most frequently conferred by mutations in the cyp51A gene encoding 14α-sterol demethylases. TR34/L98H and TR46/Y121F/T289A are the two most common mutations associated with environmental resistance selection. We studied the minimal inhibitory concentration (MIC) distribution of clinical A. fumigatus isolates to characterize the Clinical and Laboratory Standards Institute (CLSI) susceptibility profiles of isolates with the wild-type (WT) cyp51A genotype, and isolates with the TR34/L98H and TR46/Y121F/T289A cyp51A mutations. Susceptibility testing was performed according to CLSI M38-A2. The MICs of 363 A. fumigatus isolates were used in this study. Based on the CLSI epidemiological cut-off values (ECVs), 141 isolates were phenotypically non-WT and 222 isolates had a phenotypically WT susceptibility. All isolates with the TR34/L98H mutation had an itraconazole MIC > 1 mg/L which is above the CLSI ECV. Eighty-six of 89 (97%) isolates with the TR34/L98H mutation had voriconazole and posaconazole MICs above the CLSI ECV, i.e., MICs of 1 and 0.25 mg/L, respectively. The isolates with a TR46/Y121F/T289A mutation showed a different phenotype. All 37 isolates with a TR46/Y121F/T289A mutation had a voriconazole MIC above the CLSI ECV, while 28/37 (76%) isolates had an itraconazole MIC > 1 mg/L. Interestingly, only 13 of 37 (35%) isolates had a posaconazole MIC > 0.25 mg/L.


2021 ◽  
Vol 7 (3) ◽  
pp. 205
Author(s):  
Karin Meinike Jørgensen ◽  
Marie Helleberg ◽  
Rasmus Krøger Hare ◽  
Lise Nistrup Jørgensen ◽  
Maiken Cavling Arendrup

Azole resistance is an emerging problem in patients with aspergillosis. The role of fungicides for resistance development and occurrence is not fully elucidated. EUCAST reference MICs of 17 fungicides (11 azoles and 6 others), five azole fungicide metabolites and four medical triazoles were examined against two reference and 28 clinical isolates of A. fumigatus, A. flavus and A. terreus with (n = 12) and without (n = 16) resistance mutations. Eight/11 azole fungicides were active against wild-type A. fumigatus, A. flavus and A. terreus, including four (metconazole, prothioconazole-desthio, prochloraz and imazalil) with low MIC50 (≤2 mg/L) against all three species and epoxiconazole, propiconazole, tebuconazole and difenoconazole also against wild-type A. terreus. Mefentrifluconazole, azole metabolites and non-azole fungicides MICs were >16 mg/L against A. fumigatus although partial growth inhibition was found with mefentrifluconazole. Moreover, mefentrifluconazole and axozystrobin were active against wild-type A. terreus. Increased MICs (≥3 dilutions) were found for TR34/L98H, TR34(3)/L98H, TR46/Y121F/T289A and G432S compared to wild-type A. fumigatus for epoxiconazole, propiconazole, tebuconazole, difenoconazole, prochloraz, imazalil and metconazole (except G432S), and for prothioconazole-desthio against TR46/Y121F/T289A, specifically. Increased MICs were found in A. fumigatus harbouring G54R, M220K and M220R alterations for five, one and one azole fungicides, respectively, compared to MICs against wild-type A. fumigatus. Similarly, increased MICs wer found for A. terreus with G51A, M217I and Y491H alterations for five, six and two azole fungicides, respectively. Azole fungicides showed activity against wild-type A. fumigatus, A. terreus and A. flavus, but not against all mutant isolates, suggesting the environmental route of azole resistance may have a role for all three species.


2018 ◽  
Vol 62 (11) ◽  
Author(s):  
Raees A. Paul ◽  
Shivaprakash M. Rudramurthy ◽  
Manpreet Dhaliwal ◽  
Pankaj Singh ◽  
Anup K. Ghosh ◽  
...  

ABSTRACT The magnitude of azole resistance in Aspergillus flavus and its underlying mechanism is obscure. We evaluated the frequency of azole resistance in a collection of clinical (n = 121) and environmental isolates (n = 68) of A. flavus by the broth microdilution method. Six (5%) clinical isolates displayed voriconazole MIC greater than the epidemiological cutoff value. Two of these isolates with non-wild-type MIC were isolated from same patient and were genetically distinct, which was confirmed by amplified fragment length polymorphism analysis. Mutations associated with azole resistance were not present in the lanosterol 14-α demethylase coding genes (cyp51A, cyp51B, and cyp51C). Basal and voriconazole-induced expression of cyp51A homologs and various efflux pump genes was analyzed in three each of non-wild-type and wild-type isolates. All of the efflux pump genes screened showed low basal expression irrespective of the azole susceptibility of the isolate. However, the non-wild-type isolates demonstrated heterogeneous overexpression of many efflux pumps and the target enzyme coding genes in response to induction with voriconazole (1 μg/ml). The most distinctive observation was approximately 8- to 9-fold voriconazole-induced overexpression of an ortholog of the Candida albicans ATP binding cassette (ABC) multidrug efflux transporter, Cdr1, in two non-wild-type isolates compared to those in the reference strain A. flavus ATCC 204304 and other wild-type strains. Although the dominant marker of azole resistance in A. flavus is still elusive, the current study proposes the possible role of multidrug efflux pumps, especially that of Cdr1B overexpression, in contributing azole resistance in A. flavus.


2021 ◽  
Author(s):  
Marion Aruanno ◽  
Samantha Gozel ◽  
Isabelle Mouyna ◽  
Josie E Parker ◽  
Daniel Bachmann ◽  
...  

Abstract Aspergillus fumigatus is the main cause of invasive aspergillosis, for which azole drugs are the first-line therapy. Emergence of pan-azole resistance among A. fumigatus is concerning and has been mainly attributed to mutations in the target gene (cyp51A). However, azole resistance may also result from other mutations (hmg1, hapE) or other adaptive mechanisms. We performed microevolution experiment exposing an A. fumigatus azole-susceptible strain (Ku80) to sub-minimal inhibitory concentration of voriconazole to analyze emergence of azole resistance. We obtained a strain with pan-azole resistance (Ku80R), which was partially reversible after drug relief, and without mutations in cyp51A, hmg1, and hapE. Transcriptomic analyses revealed overexpression of the transcription factor asg1, several ATP-binding cassette (ABC) and major facilitator superfamily transporters and genes of the ergosterol biosynthesis pathway in Ku80R. Sterol analysis showed a significant decrease of the ergosterol mass under voriconazole exposure in Ku80, but not in Ku80R. However, the proportion of the sterol compounds was similar between both strains. To further assess the role of transporters, we used the ABC transporter inhibitor milbemycine oxime (MLB). MLB inhibited transporter activity in both Ku80 and Ku80R and demonstrated some potentiating effect on azole activity. Criteria for synergism were reached for MLB and posaconazole against Ku80. Finally, deletion of asg1 revealed some role of this transcription factor in controlling drug transporter expression, but had no impact on azole susceptibility. This work provides further insight in mechanisms of azole stress adaptation and suggests that drug transporters inhibition may represent a novel therapeutic target. Lay Summary A pan-azole-resistant strain was generated in vitro, in which drug transporter overexpression was a major trait. Analyses suggested a role of the transporter inhibitor milbemycin oxime in inhibiting drug transporters and potentiating azole activity.


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Seyedmojtaba Seyedmousavi ◽  
Johan W. Mouton ◽  
Willem J. G. Melchers ◽  
Paul E. Verweij

ABSTRACT Using an immunocompetent murine model of invasive aspergillosis (IA), we previously reported that the efficacy of liposomal amphotericin B (L-AmB) (Ambisome) is not hampered by the presence of azole resistance mutations in Aspergillus fumigatus (S. Seyedmousavi, W. J. G. Melchers, J. W. Mouton, and P. E. Verweij, Antimicrob Agents Chemother 57:1866–1871, 2013, https://doi.org/10.1128/AAC.02226-12 ). We here investigated the role of immune suppression, i.e., neutropenia and steroid treatment, in L-AmB efficacy in mice infected with wild-type (WT) A. fumigatus and with azole-resistant A. fumigatus harboring a TR34/L98H mutation in the cyp-51A gene. Survival of treated animals at day 14 in both immunosuppressed models was significantly better than that of nontreated controls. A dose-response relationship was observed that was independent of the azole-resistant mechanism and the immunosuppression method used. In the neutropenic model, 100% survival was reached at an L-AmB dose of 16 mg/kg of body weight for the WT strain and the TR34/L98H isolate. In the steroid-treated group, 90.9% survival and 100% survival were achieved for the WT isolate and the TR34/L98H isolate with an L-AmB dose of 16 mg/kg, respectively. The 50% effective dose (ED50) was 1.40 mg/kg (95% confidence interval [CI], 0.66 to 3.00 mg/kg) for the WT isolate and 1.92 mg/kg (95% CI, 0.60 to 6.17 mg/kg) for the TR34/L98H isolate in the neutropenic model and was 2.40 mg/kg (95% CI, 1.93 to 2.97 mg/kg) for the WT isolate and 2.56 mg/kg (95% CI, 1.43 to 4.56 mg/kg) for the TR34/L98H isolate in the steroid-treated group. Overall, there were no significant differences between the two different immunosuppressed conditions in the efficacy of L-AmB against the wild-type and azole-resistant isolates (P > 0.9). However, the required L-AmB exposure was significantly higher than that seen in the immunocompetent model.


2008 ◽  
Vol 77 (1) ◽  
pp. 108-119 ◽  
Author(s):  
Hemanth Ramaprakash ◽  
Toshihiro Ito ◽  
Theodore J. Standiford ◽  
Steven L. Kunkel ◽  
Cory M. Hogaboam

ABSTRACT The role of Toll-like receptor 9 (TLR9) in antifungal responses in the immunodeficient and allergic host is unclear. We investigated the role of TLR9 in murine models of invasive aspergillosis and fungal asthma. Neutrophil-depleted TLR9 wild-type (TLR9+/+) and TLR9-deficient (TLR9−/−) mice were challenged with resting or swollen Aspergillus fumigatus conidia and monitored for survival and lung inflammatory responses. The absence of TLR9 delayed, but did not prevent, mortality in immunodeficient mice challenged with resting or swollen conidia compared to TLR9+/+ mice. In a fungal asthma model, TLR9+/+ and TLR9−/− mice were sensitized to soluble A. fumigatus antigens and challenged with resting or swollen A. fumigatus conidia, and both groups of mice were analyzed prior to and at days 7, 14, and 28 after the conidium challenge. When challenged with resting conidia, TLR9−/− mice exhibited significantly lower airway hyper-responsiveness compared to the TLR9+/+ groups. In contrast, A. fumigatus-sensitized TLR9−/− mice exhibited pulmonary fungal growth at days 14 and 28 after challenge with swollen conidia, a finding never observed in their allergic wild-type counterparts. Increased fungal growth in allergic TLR9−/− mice correlated with markedly decreased dectin-1 expression in whole lung samples and isolated dendritic cell populations. Further, whole lung levels of interleukin-17 were lower in allergic TLR9−/− mice compared to similar TLR9+/+ mice. Together, these data suggest that TLR9 modulates pulmonary antifungal immune responses to swollen conidia, possibly through the regulation of dectin-1 expression.


2007 ◽  
Vol 6 (9) ◽  
pp. 1552-1561 ◽  
Author(s):  
Janyce A. Sugui ◽  
Julian Pardo ◽  
Yun C. Chang ◽  
Arno Müllbacher ◽  
Kol A. Zarember ◽  
...  

ABSTRACT The alb1 (pksP) gene has been reported as a virulence factor controlling the pigmentation and morphology of conidia in Aspergillus fumigatus. A recent report suggested that laeA regulates alb1 expression and conidial morphology but not pigmentation in the A. fumigatus strain AF293. laeA has also been reported to regulate the synthesis of secondary metabolites, such as gliotoxin. We compared the role of laeA in the regulation of conidial morphology and the expression of alb1 and gliP in strains B-5233 and AF293, which differ in colony morphology and nutritional requirements. Deletion of laeA did not affect conidial morphology or pigmentation in these strains, suggesting that laeA is not involved in alb1 regulation during conidial morphogenesis. Deletion of laeA, however, caused down-regulation of alb1 during mycelial growth in a liquid medium. Transcription of gliP, involved in the synthesis of gliotoxin, was drastically reduced in B-5233laeAΔ, and the gliotoxin level found in the culture filtrates was 20% of wild-type concentrations. While up-regulation of gliP in AF293 was comparable to that in B-5233, the relative mRNA level in AF293laeAΔ was about fourfold lower than that in B-5233laeAΔ. Strain B-5233laeAΔ caused slower onset of fatal infection in mice relative to that with B-5233. Histopathology of sections from lungs of infected mice corroborated the survival data. Culture filtrates from B-5233laeAΔ caused reduced death in thymoma cells and were less inhibitory to a respiratory burst of neutrophils than culture filtrates from B-5233. Our results suggest that while laeA is not involved in the regulation of alb1 function in conidial morphology, it regulates the synthesis of gliotoxin and the virulence of A. fumigatus.


Author(s):  
I Gonzalez-Jimenez ◽  
R Garcia-Rubio ◽  
S Monzon ◽  
J Lucio ◽  
I Cuesta ◽  
...  

Drug resistance is a worldwide problem affecting all pathogens. The human fungal pathogen Aspergillus fumigatus coexists in the environment with other fungi targeted by crop protection compounds being unintentionally exposed to the selective pressure of multiple antifungal classes leading to the selection of resistant strains. A. fumigatus azole resistant isolates are emerging in both the clinical and environmental setting. Since their approval, azole drugs have dominated the clinical treatment for aspergillosis infections, and the agriculture fungicide market. However, other antifungal classes are used for crop protection including benzimidazoles (MBC), strobilurins (QoIs) and succinate dehydrogenase inhibitors (SDHIs). Mutations responsible for resistance to these fungicides have been widely researched in plant pathogens, but it has not been explored in A. fumigatus . In this work, the genetic basis underlying resistance to MBCs, QoIs and SDHIs were studied in azole susceptible and resistant A. fumigatus strains. E198A/Q and F200Y mutations in the β-tubulin conferred resistance to MBCs, G143A and F129L substitutions in the Cytochrome b to QoIs and H270R/Y mutations in SdhB to SDHIs. Characterization of the susceptibility to azoles showed a correlation between strains resistant to these fungicides and the ones with TR-based azole resistance mechanisms. Whole genome sequencing analysis showed a genetic relationship among fungicide multi resistant strains, which grouped together into subclusters that only included strains carrying the TR-based azole resistance mechanisms, indicating a common ancestor/evolution pattern and confirming the environmental origin of this type of azole resistant A. fumigatus .


Sign in / Sign up

Export Citation Format

Share Document