scholarly journals ThePseudomonas aeruginosaPilSR Two-Component System Regulates Both Twitching and Swimming Motilities

mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Sara L. N. Kilmury ◽  
Lori L. Burrows

ABSTRACTMotility is an important virulence trait for many bacterial pathogens, allowing them to position themselves in appropriate locations at appropriate times. The motility structures type IV pili and flagella are also involved in sensing surface contact, which modulates pathogenicity. InPseudomonas aeruginosa, the PilS-PilR two-component system (TCS) regulates expression of the type IV pilus (T4P) major subunit PilA, while biosynthesis of the single polar flagellum is regulated by a hierarchical system that includes the FleSR TCS. Previous studies ofGeobacter sulfurreducensandDichelobacter nodosusimplicated PilR in regulation of non-T4P-related genes, including some involved in flagellar biosynthesis. Here we used transcriptome sequencing (RNA-seq) analysis to identify genes in addition topilAwith changes in expression in the absence ofpilR. Among the genes identified were 10 genes whose transcription increased in thepilAmutant but decreased in thepilRmutant, despite both mutants lacking T4P and pilus-related phenotypes. The products of these inversely dysregulated genes, many of which were hypothetical, may be important for virulence and surface-associated behaviors, as mutants had altered swarming motility, biofilm formation, type VI secretion system expression, and pathogenicity in a nematode model. Further, the PilSR TCS positively regulated transcription offleSR, and thus many genes in the FleSR regulon. As a result,pilSRdeletion mutants had defects in swimming motility that were independent of the loss of PilA. Together, these data suggest that in addition to controlling T4P expression, PilSR could have a broader role in the regulation ofP. aeruginosamotility and surface sensing behaviors.IMPORTANCESurface appendages such as type IV pili and flagella are important for establishing surface attachment and infection in a host in response to appropriate cues. The PilSR regulatory system that controls type IV pilus expression inPseudomonas aeruginosahas an established role in expression of the major pilin PilA. Here we provide evidence supporting a new role for PilSR in regulating flagellum-dependent swimming motility in addition to pilus-dependent twitching motility. Further, even though bothpilAandpilRmutants lack PilA and pili, we identified sets of genes downregulated in thepilRmutant and upregulated in apilAmutant as well as genes downregulated only in apilRmutant, independent of pilus expression. This finding suggests that change in the inner membrane levels of PilA is only one of the cues to which PilR responds to modulate gene expression. Identification of PilR as a regulator of multiple motility pathways may make it an interesting therapeutic target for antivirulence compounds.

2018 ◽  
Author(s):  
Sara L.N. Kilmury ◽  
Lori L. Burrows

ABSTRACTMotility is an important virulence trait for many bacterial pathogens, allowing them to position themselves in appropriate locations at appropriate times. Motility structures - pili and flagella - are also involved in sensing surface contact, which modulates pathogenicity. InPseudomonas aeruginosa, the PilS-PilR two-component system (TCS) regulates expression of the type IV pilus (T4P) major subunit PilA, while biosynthesis of the single polar flagellum is regulated by a hierarchical system that includes the FleSR TCS. Previous studies inGeobacter sulfurreducensandDichelobacter nodosusimplicated PilR in regulation of non-T4P-related genes, including some involved in flagellar biosynthesis. Here we used RNAseq analysis to identify genes in addition topilAwith changes in expression in the absence ofpilR. Among these were 10 genes inversely dysregulated by loss ofpilAversuspilR, even though bothpilAandpilRmutants lack T4P and pilus-related phenotypes. The products of those genes - many of which were hypothetical - may be important for virulence and surface-associated behaviours, as mutants had altered swarming motility, biofilm formation, type VI secretion, and pathogenicity in a nematode model. Further, the PilSR TCS positively regulated transcription offleSR, and thus many genes in the FleSR regulon. As a result,pilSRdeletion mutants had defects in swimming motility that were independent of the loss of PilA. Together these data suggest that in addition to controlling T4P expression, PilSR have a broader role in the regulation ofP. aeruginosamotility and surface sensing behaviours.


2012 ◽  
Vol 56 (12) ◽  
pp. 6212-6222 ◽  
Author(s):  
Lucía Fernández ◽  
Håvard Jenssen ◽  
Manjeet Bains ◽  
Irith Wiegand ◽  
W. James Gooderham ◽  
...  

ABSTRACTCationic antimicrobial peptides pass across the outer membrane by interacting with negatively charged lipopolysaccharide (LPS), leading to outer membrane permeabilization in a process termed self-promoted uptake. Resistance can be mediated by the addition of positively charged arabinosamine through the action of thearnBCADTEFoperon. We recently described a series of two-component regulators that lead to the activation of thearnoperon after recognizing environmental signals, including low-Mg2+(PhoPQ, PmrAB) or cationic (ParRS) peptides. However, some peptides did not activate thearnoperon through ParRS. Here, we report the identification of a new two-component system, CprRS, which, upon exposure to a wide range of antimicrobial peptides, triggered the expression of the LPS modification operon. Thus, mutations in thecprRSoperon blocked the induction of thearnoperon in response to several antimicrobial peptides independently of ParRS but did not affect the response to low Mg2+. Distinct patterns ofarninduction were identified. Thus, the responses to polymyxins were abrogated by eitherparRorcprRmutations, while responses to other peptides, including indolicidin, showed differential dependency on the CprRS and ParRS systems in a concentration-dependent manner. It was further demonstrated that, following exposure to inducing antimicrobial peptides,cprRSmutants did not become adaptively resistant to polymyxins as was observed for wild-type cells. Our microarray studies demonstrated that the CprRS system controlled a quite modest regulon, indicating that it was quite specific to adaptive peptide resistance. These findings provide greater insight into the complex regulation of LPS modification inPseudomonas aeruginosa, which involves the participation of at least 4 two-component systems.


mSphere ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Patrick K. Taylor ◽  
Li Zhang ◽  
Thien-Fah Mah

ABSTRACT The two-component system TctD-TctE is important for regulating the uptake of tricarboxylic acids in Pseudomonas aeruginosa. TctD-TctE accomplishes this through derepression of the gene opdH, which encodes a tricarboxylic acid-specific porin. Previous work from our lab revealed that TctD-TctE in P. aeruginosa also has a role in resistance to aminoglycoside antibiotics. The aim of this study was to further characterize the role of TctD-TctE in P. aeruginosa in the presence of citric acid. Here it was found that deletion of P. aeruginosa PA14 TctD-TctE (ΔtctED) resulted in a 4-fold decrease in the biofilm bactericidal concentrations of the aminoglycosides tobramycin and gentamicin when citric acid was present in nutrient media. Tobramycin accumulation assays demonstrated that deletion of TctD-TctE resulted in an increase in the amount of tobramycin retained in biofilm cells. The PA14 wild type responded to increasing concentrations of citric acid by producing less biofilm. In contrast, the amount of ΔtctED mutant biofilm formation remained constant or enhanced. Furthermore, the ΔtctED strain was incapable of growing on citric acid as a sole carbon source and was highly reduced in its ability to grow in the presence of citric acid even when an additional carbon source was available. Use of phenotypic and genetic microarrays found that this growth deficiency of the ΔtctED mutant is unique to citric acid and that multiple metabolic genes are dysregulated. This work demonstrates that TctD-TctE in P. aeruginosa has a role in biofilm development that is dependent on citric acid and that is separate from the previously characterized involvement in resistance to antibiotics. IMPORTANCE Nutrient availability is an important contributor to the ability of bacteria to establish successful infections in a host. Pseudomonas aeruginosa is an opportunistic pathogen in humans causing infections that are difficult to treat. In part, its success is attributable to a high degree of metabolic versatility. P. aeruginosa is able to sense and respond to varied and limited nutrient stress in the host environment. Two-component systems are important sensors-regulators of cellular responses to environmental stresses, such as those encountered in the host. This work demonstrates that the response by the two-component system TctD-TctE to the presence of citric acid has a role in biofilm formation, aminoglycoside susceptibility, and growth in P. aeruginosa.


2013 ◽  
Vol 57 (5) ◽  
pp. 2243-2251 ◽  
Author(s):  
Calvin Ho-Fung Lau ◽  
Sebastien Fraud ◽  
Marcus Jones ◽  
Scott N. Peterson ◽  
Keith Poole

ABSTRACTTheamgRSoperon encodes a presumed membrane stress-responsive two-component system linked to intrinsic aminoglycoside resistance inPseudomonas aeruginosa. Genome sequencing of a lab isolate showing modest pan-aminoglycoside resistance, strain K2979, revealed a number of mutations, including a substitution inamgSthat produced an R182C change in the AmgS sensor kinase product of this gene. Introduction of this mutation into an otherwise wild-type strain recapitulated the resistance phenotype, while correcting the mutation in the resistant mutant abrogated the resistant phenotype, confirming that theamgSmutation is responsible for the aminoglycoside resistance of strain K2979. TheamgSR182mutation promoted an AmgR-dependent, 2- to 3-fold increase in expression of the AmgRS target geneshtpXand PA5528, mirroring the impact of aminoglycoside exposure of wild-type cells onhtpXand PA5528 expression. This suggests thatamgSR182is a gain-of-function mutation that activates AmgS and the AmgRS two-component system in promoting modest resistance to aminoglycosides. Screening of several pan-aminoglycoside-resistant clinical isolates ofP. aeruginosarevealed three that showed elevatedhtpXand PA5528 expression and harbored single amino acid-altering mutations inamgS(V121G or D106N) and no mutations inamgR. Introduction of theamgSV121Gmutation into wild-typeP. aeruginosagenerated a resistance phenotype reminiscent of theamgSR182mutant and produced a 2- to 3-fold increase inhtpXand PA5528 expression, confirming that it, too, is a gain-of-function aminoglycoside resistance-promoting mutation. These results highlight the contribution ofamgSmutations and activation of the AmgRS two-component system to acquired aminoglycoside resistance in lab and clinical isolates ofP. aeruginosa.


mSphere ◽  
2020 ◽  
Vol 5 (6) ◽  
pp. e01193-20
Author(s):  
Lorena Novoa-Aponte ◽  
Cheng Xu ◽  
Fernando C. Soncini ◽  
José M. Argüello

ABSTRACTTwo-component systems control periplasmic Cu+ homeostasis in Gram-negative bacteria. In characterized systems such as Escherichia coli CusRS, upon Cu+ binding to the periplasmic sensing region of CusS, a cytoplasmic phosphotransfer domain of the sensor phosphorylates the response regulator CusR. This drives the expression of efflux transporters, chaperones, and redox enzymes to ameliorate metal toxic effects. Here, we show that the Pseudomonas aeruginosa two-component sensor histidine kinase CopS exhibits a Cu-dependent phosphatase activity that maintains CopR in a nonphosphorylated state when the periplasmic Cu levels are below the activation threshold of CopS. Upon Cu+ binding to the sensor, the phosphatase activity is blocked and the phosphorylated CopR activates transcription of the CopRS regulon. Supporting the model, mutagenesis experiments revealed that the ΔcopS strain exhibits maximal expression of the CopRS regulon, lower intracellular Cu+ levels, and increased Cu tolerance compared to wild-type cells. The invariant phosphoacceptor residue His235 of CopS was not required for the phosphatase activity itself but was necessary for its Cu dependency. To sense the metal, the periplasmic domain of CopS binds two Cu+ ions at its dimeric interface. Homology modeling of CopS based on CusS structure (four Ag+ binding sites) clearly supports the different binding stoichiometries in the two systems. Interestingly, CopS binds Cu+/2+ with 3 × 10−14 M affinity, pointing to the absence of free (hydrated) Cu+/2+ in the periplasm.IMPORTANCE Copper is a micronutrient required as cofactor in redox enzymes. When free, copper is toxic, mismetallating proteins and generating damaging free radicals. Consequently, copper overload is a strategy that eukaryotic cells use to combat pathogens. Bacteria have developed copper-sensing transcription factors to control copper homeostasis. The cell envelope is the first compartment that has to cope with copper stress. Dedicated two-component systems control the periplasmic response to metal overload. This paper shows that the sensor kinase of the copper-sensing two-component system present in Pseudomonadales exhibits a signal-dependent phosphatase activity controlling the activation of its cognate response regulator, distinct from previously described periplasmic Cu sensors. Importantly, the data show that the system is activated by copper levels compatible with the absence of free copper in the cell periplasm. These observations emphasize the diversity of molecular mechanisms that have evolved in bacteria to manage the copper cellular distribution.


2016 ◽  
Vol 60 (6) ◽  
pp. 3509-3518 ◽  
Author(s):  
Keith Poole ◽  
Christie Gilmour ◽  
Maya A. Farha ◽  
Erin Mullen ◽  
Calvin Ho-Fung Lau ◽  
...  

A screen for agents that potentiated the activity of paromomycin (PAR), a 4,5-linked aminoglycoside (AG), against wild-typePseudomonas aeruginosaidentified the RNA polymerase inhibitor rifampin (RIF). RIF potentiated additional 4,5-linked AGs, such as neomycin and ribostamycin, but not the clinically important 4,6-linked AGs amikacin and gentamicin. Potentiation was absent in a mutant lacking the AmgRS envelope stress response two-component system (TCS), which protects the organism from AG-generated membrane-damaging aberrant polypeptides and, thus, promotes AG resistance, an indication that RIF was acting via this TCS in potentiating 4,5-linked AG activity. Potentiation was also absent in a RIF-resistant RNA polymerase mutant, consistent with its potentiation of AG activity being dependent on RNA polymerase perturbation. PAR-inducible expression of the AmgRS-dependent geneshtpXandyccAwas reduced by RIF, suggesting that AG activation of this TCS was compromised by this agent. Still, RIF did not compromise the membrane-protective activity of AmgRS, an indication that it impacted some other function of this TCS. RIF potentiated the activities of 4,5-linked AGs against several AG-resistant clinical isolates, in two cases also potentiating the activity of the 4,6-linked AGs. These cases were, in one instance, explained by an observed AmgRS-dependent expression of the MexXY multidrug efflux system, which accommodates a range of AGs, with RIF targeting of AmgRS underminingmexXYexpression and its promotion of resistance to 4,5- and 4,6-linked AGs. Given this link between AmgRS, MexXY expression, and pan-AG resistance inP. aeruginosa, RIF might be a useful adjuvant in the AG treatment ofP. aeruginosainfections.


2019 ◽  
Vol 85 (22) ◽  
Author(s):  
Congcong Wang ◽  
Wenhui Chen ◽  
Aiguo Xia ◽  
Rongrong Zhang ◽  
Yajia Huang ◽  
...  

ABSTRACT Pseudomonas aeruginosa can cause severe infections in humans. This bacterium often adopts a biofilm lifestyle that is hard to treat. In several previous studies, the PprA-PprB two-component system (TCS), which controls the expression of type IVb pili, BapA adhesin, and CupE fimbriae, was shown to be involved in biofilm formation (M. Romero, H. Silistre, L. Lovelock, V. J. Wright, K.-G. Chan, et al., Nucleic Acids Res 46:6823–6840, 2018, https://doi.org/10.1093/nar/gky324; S. de Bentzmann, C. Giraud, C. S. Bernard, V. Calderon, F. Ewald F, et al., PLoS Pathog 8:e1003052, 2012, https://doi.org/10.1371/journal.ppat.1003052). However, signals or environmental conditions that can trigger the PprA-PprB TCS are still unknown, and the molecular mechanisms of PprB-mediated biofilm formation are poorly characterized. Here, we report that carbon starvation stress (CSS) can induce the expression of pprB and genes in the PprB regulon. CSS-induced pprB transcription is mediated by the stress response sigma factor RpoS rather than the two-component sensor PprA. We also observed a strong negative regulation of PprB on the transcription of itself. Further experiments showed that PprB overexpression greatly enhanced cell-cell adhesion (CCA) and cell-surface adhesion (CSA) in P. aeruginosa. Specifically, under the background of PprB overexpression, both the BapA adhesin and CupE fimbriae displayed positive effects on CCA and CSA, while the type IVb pili showed an unexpected negative effect on CCA and no effect on CSA. In addition, expression of the PprB regulon genes were significantly increased in 3-day colony biofilms, indicating a possible carbon limitation state. The CSS-RpoS-PprB-Bap/Flp/CupE pathway identified in this study provides a new perspective on the process of biofilm formation in carbon-limited environments. IMPORTANCE Typically, the determination of the external signals that can trigger a regulatory system is crucial to understand the regulatory logic and inward function of that system. The PprA-PprB two-component system was reported to be involved in biofilm formation in Pseudomonas aeruginosa, but the signals triggering this system are unknown. In this study, we found that carbon starvation stress (CSS) induces transcription of pprB and genes in the PprB regulon through an RpoS-dependent pathway. Increased PprB expression leads to enhanced cell-cell adhesion (CCA) and cell-surface adhesion (CSA) in P. aeruginosa. Both CCA and CSA are largely dependent on the Bap secretion system and are moderately dependent on the CupE fimbriae. Our findings suggest that PprB reinforces the structure of biofilms under carbon-limited conditions, and the Bap secretion system and CupE fimbriae are two potential targets for biofilm treatment.


2018 ◽  
Vol 200 (8) ◽  
Author(s):  
Kevin D. Mlynek ◽  
William E. Sause ◽  
Derek E. Moormeier ◽  
Marat R. Sadykov ◽  
Kurt R. Hill ◽  
...  

ABSTRACTStaphylococcus aureussubverts innate defenses during infection in part by killing host immune cells to exacerbate disease. This human pathogen intercepts host cues and activates a transcriptional response via theS. aureusexoprotein expression (SaeR/SaeS [SaeR/S]) two-component system to secrete virulence factors critical for pathogenesis. We recently showed that the transcriptional repressor CodY adjusts nuclease (nuc) gene expression via SaeR/S, but the mechanism remained unknown. Here, we identified two CodY binding motifs upstream of thesaeP1 promoter, which suggested direct regulation by this global regulator. We show that CodY shares a binding site with the positive activator SaeR and that alleviating direct CodY repression at this site is sufficient to abrogate stochastic expression, suggesting that CodY repressessaeexpression by blocking SaeR binding. Epistasis experiments support a model that CodY also controlssaeindirectly through Agr and Rot-mediated repression of thesaeP1 promoter. We also demonstrate that CodY repression ofsaerestrains production of secreted cytotoxins that kill human neutrophils. We conclude that CodY plays a previously unrecognized role in controlling virulence gene expression via SaeR/S and suggest a mechanism by which CodY acts as a master regulator of pathogenesis by tying nutrient availability to virulence gene expression.IMPORTANCEBacterial mechanisms that mediate the switch from a commensal to pathogenic lifestyle are among the biggest unanswered questions in infectious disease research. Since the expression of most virulence genes is often correlated with nutrient depletion, this implies that virulence is a response to the lack of nourishment in host tissues and that pathogens likeS. aureusproduce virulence factors in order to gain access to nutrients in the host. Here, we show that specific nutrient depletion signals appear to be funneled to the SaeR/S system through the global regulator CodY. Our findings reveal a strategy by whichS. aureusdelays the production of immune evasion and immune-cell-killing proteins until key nutrients are depleted.


2011 ◽  
Vol 79 (6) ◽  
pp. 2154-2167 ◽  
Author(s):  
Ting Xue ◽  
Yibo You ◽  
De Hong ◽  
Haipeng Sun ◽  
Baolin Sun

ABSTRACTThe Kdp system is widely distributed among bacteria. InEscherichia coli, the Kdp-ATPase is a high-affinity K+uptake system and its expression is activated by the KdpDE two-component system in response to K+limitation or salt stress. However, information about the role of this system in many bacteria still remains obscure. Here we demonstrate that KdpFABC inStaphylococcus aureusis not a major K+transporter and that the main function of KdpDE is not associated with K+transport but that instead it regulates transcription for a series of virulence factors through sensing external K+concentrations, indicating that this bacterium might modulate its infectious status through sensing specific external K+stimuli in different environments. Our results further reveal thatS. aureusKdpDE is upregulated by the Agr/RNAIII system, which suggests that KdpDE may be an important virulence regulator coordinating the external K+sensing and Agr signaling during pathogenesis in this bacterium.


2014 ◽  
Vol 80 (8) ◽  
pp. 2493-2503 ◽  
Author(s):  
Sara Esther Diomandé ◽  
Stéphanie Chamot ◽  
Vera Antolinos ◽  
Florian Vasai ◽  
Marie-Hélène Guinebretière ◽  
...  

ABSTRACTThe different strains ofBacillus cereuscan grow at temperatures covering a very diverse range. SomeB. cereusstrains can grow in chilled food and consequently cause food poisoning. We have identified a new sensor/regulator mechanism involved in low-temperatureB. cereusgrowth. Construction of a mutant of this two-component system enabled us to show that this system, called CasKR, is required for growth at the minimal temperature (Tmin). CasKR was also involved in optimal cold growth aboveTminand in cell survival belowTmin. Microscopic observation showed that CasKR plays a key role in cell shape during cold growth. Introducing thecasKRgenes in a ΔcasKRmutant restored its ability to grow atTmin. Although it was first identified in the ATCC 14579 model strain, this mechanism has been conserved in most strains of theB. cereusgroup. We show that the role of CasKR in cold growth is similar in otherB. cereus sensu latostrains with different growth temperature ranges, including psychrotolerant strains.


Sign in / Sign up

Export Citation Format

Share Document