scholarly journals Cellular Calcium Levels Influenced by NCA-2 Impact Circadian Period Determination in Neurospora

mBio ◽  
2021 ◽  
Author(s):  
Bin Wang ◽  
Xiaoying Zhou ◽  
Scott A. Gerber ◽  
Jennifer J. Loros ◽  
Jay C. Dunlap

Circadian rhythms are based on cell-autonomous, auto-regulatory feedback loops formed by interlocked positive and negative arms, and they regulate myriad molecular and cellular processes in most eukaryotes, including fungi. Intracellular calcium signaling is also a process that impacts a broad range of biological events in most eukaryotes.

2021 ◽  
Vol 8 ◽  
Author(s):  
Marie Wannowius ◽  
Emre Karakus ◽  
Joachim Geyer

The solute carrier family 10 member SLC10A7 is a negative regulator of intracellular calcium signaling (RCAS). In cell culture, SLC10A7 expression is negatively correlated with store-operated calcium entry (SOCE) via the plasma membrane. SLC10A7-deficient cells have significantly increased calcium influx after treatment with thapsigargin for depletion of ER calcium stores, whereas SLC10A7/RCAS overexpression limits calcium influx. Genetic variants in the human SLC10A7 gene are associated with skeletal dysplasia and amelogenesis imperfecta and reveal loss of function on cellular calcium influx. More recently, an additional disease-related genetic variant (P303L) as well as some novel genetic variants (V235F, T221M, I136M, L210F, P285L, and G146S) have been identified. In the present study, these variants were expressed in HEK293 cells to study their subcellular localization and their effect on cellular calcium influx. All variants were properly sorted to the ER compartment and closely co-localized with the STIM protein, a functional component of SOCE. The variants P303L and L210F showed significantly reduced effects on cellular calcium influx compared to the wild type but still maintained some degree of residual activity. This might explain the milder phenotype of patients bearing the P303L variant and might indicate disease potential for the newly identified L210F variant. In contrast, all other variants behaved like the wild type. In conclusion, the occurrence of variants in the SLC10A7 gene should be considered in patients with skeletal dysplasia and amelogenesis imperfecta. In addition to the already established variants, the present study identifies another potential disease-related SLC10A7/RCAS variant, namely, L210F, which seems to be most frequent in South Asian populations.


Author(s):  
FRANK CH. MOOREN ◽  
ANJA LECHTERMANN ◽  
ALBERT FROMME ◽  
LOTHAR THORWESTEN ◽  
KLAUS V??LKER

2012 ◽  
Vol 198 (1) ◽  
pp. 7-10 ◽  
Author(s):  
Ilya Bezprozvanny

Mutations in presenilins (PS), transmembrane proteins encoding the catalytic subunit of γ-secretase, result in familial Alzheimer’s disease (FAD). Several studies have identified lysosomal defects in cells lacking PS or expressing FAD-associated PS mutations, which have been previously attributed to a function for PS in lysosomal acidification. Now, in this issue, Coen et al. (2012. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201201076) provide a series of results that challenge this idea and propose instead that presenilins play a role in calcium-mediated lysosomal fusion.


2005 ◽  
Vol 80 (1) ◽  
pp. 135-145 ◽  
Author(s):  
Clayton S. Spada ◽  
Achim H.-P. Krauss ◽  
David F. Woodward ◽  
June Chen ◽  
Charles E. Protzman ◽  
...  

2021 ◽  
Author(s):  
Alejandra J.H. Cabrera ◽  
Barry M Gumbiner ◽  
Young V Kwon

Given the role of E-cadherin (E-cad) in holding epithelial cells together, the inverse relationship between E-cad levels and cell invasion has been perceived as a principle underlying the invasiveness of tumor cells. In contrast, our study employing the Drosophila model of cell dissemination demonstrates that E-cad is necessary for the invasiveness of RasV12-transformed cells in vivo. Drosophila E-cad/β-catenin disassembles at adherens junctions and assembles at invasive protrusions—the actin- and cortactin-rich invadopodia-like protrusions associated with breach of the extracellular matrix (ECM)—during cell dissemination. Loss of E-cad attenuates dissemination of RasV12-transformed cells by impairing their ability to compromise the ECM. Strikingly, the remodeling of E-cad/β-catenin subcellular distribution is controlled by two discrete intracellular calcium signaling pathways: Ca2+ release from endoplasmic reticulum via the inositol triphosphate receptor (IP3R) disassembles E-cad at adherens junctions while Ca2+ entry via the mechanosensitive channel Piezo assembles E-cad at invasive protrusions. Thus, our study provides molecular insights into the unconventional role of E-cad in cell invasion during cell dissemination in vivo and describes the discrete roles of intracellular calcium signaling in the remodeling of E-cad/β-catenin subcellular localization.


Sign in / Sign up

Export Citation Format

Share Document