scholarly journals Quorum Sensing and Metabolic State of the Host Control Lysogeny-Lysis Switch of Bacteriophage T1

mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Leanid Laganenka ◽  
Timur Sander ◽  
Alexander Lagonenko ◽  
Yu Chen ◽  
Hannes Link ◽  
...  

ABSTRACT Bacterial viruses, or bacteriophages, are highly abundant in the biosphere and have a major impact on microbial populations. Many examples of phage interactions with their hosts, including establishment of dormant lysogenic and active lytic states, have been characterized at the level of the individual cell. However, much less is known about the dependence of these interactions on host metabolism and signal exchange within bacterial communities. In this report, we describe a lysogenic state of the enterobacterial phage T1, previously known as a classical lytic phage, and characterize the underlying regulatory circuitry. We show that the transition from lysogeny to lysis depends on bacterial population density, perceived via interspecies autoinducer 2. Lysis is further controlled by the metabolic state of the cell, mediated by the cyclic-3′,5′-AMP (cAMP) receptor protein (CRP) of the host. We hypothesize that such combinations of cell density and metabolic sensing may be common in phage-host interactions. IMPORTANCE The dynamics of microbial communities are heavily shaped by bacterium-bacteriophage interactions. But despite the apparent importance of bacteriophages, our understanding of the mechanisms controlling phage dynamics in bacterial populations, and particularly of the differences between the decisions that are made in the dormant lysogenic and active lytic states, remains limited. In this report, we show that enterobacterial phage T1, previously described as a lytic phage, is able to undergo lysogeny. We further demonstrate that the lysogeny-to-lysis decision occurs in response to changes in the density of the bacterial population, mediated by interspecies quorum-sensing signal AI-2, and in the metabolic state of the cell, mediated by cAMP receptor protein. We hypothesize that this strategy enables the phage to maximize its chances of self-amplification and spreading in bacterial population upon induction of the lytic cycle and that it might be common in phage-host interactions.

1983 ◽  
Vol 258 (11) ◽  
pp. 6979-6983 ◽  
Author(s):  
R Rangel-Aldao ◽  
G Tovar ◽  
M Ledezma de Ruiz

1999 ◽  
Vol 337 (3) ◽  
pp. 415-423 ◽  
Author(s):  
Emma C. LAW ◽  
Nigel J. SAVERY ◽  
Stephen J. W. BUSBY

The Escherichia coli cAMP receptor protein (CRP) is a factor that activates transcription at over 100 target promoters. At Class I CRP-dependent promoters, CRP binds immediately upstream of RNA polymerase and activates transcription by making direct contacts with the C-terminal domain of the RNA polymerase α subunit (αCTD). Since αCTD is also known to interact with DNA sequence elements (known as UP elements), we have constructed a series of semi-synthetic Class I CRP-dependent promoters, carrying both a consensus DNA-binding site for CRP and a UP element at different positions. We previously showed that, at these promoters, the CRP–αCTD interaction and the CRP–UP element interaction contribute independently and additively to transcription initiation. In this study, we show that the two halves of the UP element can function independently, and that, in the presence of the UP element, the best location for the DNA site for CRP is position -69.5. This suggests that, at Class I CRP-dependent promoters where the DNA site for CRP is located at position -61.5, the two αCTDs of RNA polymerase are not optimally positioned. Two experiments to test this hypothesis are presented.


2000 ◽  
Vol 275 (9) ◽  
pp. 6241-6245 ◽  
Author(s):  
Hidehisa Yoshimura ◽  
Toru Hisabori ◽  
Shuichi Yanagisawa ◽  
Masayuki Ohmori

Microbiology ◽  
2006 ◽  
Vol 152 (9) ◽  
pp. 2749-2756 ◽  
Author(s):  
Nisheeth Agarwal ◽  
Tirumalai R. Raghunand ◽  
William R. Bishai

The wbl (whiB-like) genes encode putative transcription factors unique to actinomycetes. This study characterized the promoter element of one of the seven wbl genes of Mycobacterium tuberculosis, whiB1 (Rv3219c). The results reveal that whiB1 is transcribed by a class I-type cAMP receptor protein (CRP)-dependent promoter, harbouring a CRP-binding site positioned at −58.5 with respect to its transcription start point. In vivo promoter activity analysis and electrophoretic mobility shift assays suggest that the expression of whiB1 is indeed regulated by cAMP-dependent binding of CRPM (encoded by the M. tuberculosis gene Rv3676) to the whiB1 5′ untranslated region (5′UTR). β-Galactosidase gene fusion analysis revealed induction of the whiB1 promoter in M. tuberculosis on addition of exogenous dibutyric cAMP (a diffusible cAMP analogue) only when an intact CRP-binding site was present. These results indicate that M. tuberculosis whiB1 transcription is regulated in part by cAMP levels via direct binding of cAMP-activated CRPM to a consensus CRP-binding site in the whiB1 5′UTR.


1995 ◽  
Vol 270 (37) ◽  
pp. 21679-21683 ◽  
Author(s):  
Inna Gorshkova ◽  
Julie L. Moore ◽  
Keith H. McKenney ◽  
Frederick P. Schwarz

Sign in / Sign up

Export Citation Format

Share Document