scholarly journals Pseudomonas aeruginosa Leucine Aminopeptidase Influences Early Biofilm Composition and Structure via Vesicle-Associated Antibiofilm Activity

mBio ◽  
2019 ◽  
Vol 10 (6) ◽  
Author(s):  
Caitlin N. Esoda ◽  
Meta J. Kuehn

ABSTRACT Pseudomonas aeruginosa, known as one of the leading causes of disease in cystic fibrosis (CF) patients, secretes a variety of proteases. These enzymes contribute significantly to P. aeruginosa pathogenesis and biofilm formation in the chronic colonization of CF patient lungs, as well as playing a role in infections of the cornea, burn wounds, and chronic wounds. We previously characterized a secreted P. aeruginosa peptidase, PaAP, that is highly expressed in chronic CF isolates. This leucine aminopeptidase is highly expressed during infection and in biofilms, and it associates with bacterial outer membrane vesicles (OMVs), structures known to contribute to virulence mechanisms in a variety of Gram-negative species and one of the major components of the biofilm matrix. We hypothesized that PaAP may play a role in P. aeruginosa biofilm formation. Using a lung epithelial cell/bacterial biofilm coculture model, we show that PaAP deletion in a clinical P. aeruginosa background alters biofilm microcolony composition to increase cellular density, while decreasing matrix polysaccharide content, and that OMVs from PaAP-expressing strains but not PaAP alone or in combination with PaAP deletion strain-derived OMVs could complement this phenotype. We additionally found that OMVs from PaAP-expressing strains could cause protease-mediated biofilm detachment, leading to changes in matrix and colony composition. Finally, we showed that the OMVs could also mediate the detachment of biofilms formed by both nonself P. aeruginosa strains and Klebsiella pneumoniae, another respiratory pathogen. Our findings represent novel roles for OMVs and the aminopeptidase in the modulation of P. aeruginosa biofilm architecture. IMPORTANCE Biofilm formation by the bacterial pathogen P. aeruginosa is known to contribute to drug resistance in nosocomial infections and chronic lung infections of cystic fibrosis patients. In order to treat these infections more successfully, the mechanisms of bacterial biofilm development must be elucidated. While both bacterially secreted aminopeptidase and outer membrane vesicles have been shown to be abundant in P. aeruginosa biofilm matrices, the contributions of each of these factors to the steps in biofilm generation have not been well studied. This work provides new insight into how these bacterial components mediate the formation of a robust, drug-resistant extracellular matrix and implicates outer membrane vesicles as active components of biofilm architecture, expanding our overall understanding of P. aeruginosa biofilm biology.

2019 ◽  
Author(s):  
Caitlin N. Esoda ◽  
Meta J. Kuehn

AbstractPseudomonas aeruginosa, known as one of the leading causes of disease in cystic fibrosis (CF) patients, secretes a variety of proteases. These enzymes contribute significantly to P. aeruginosa pathogenesis and biofilm formation in the chronic colonization of CF patient lungs, as well as playing a role in infections of the cornea, burn wounds and chronic wounds. We previously characterized a secreted P. aeruginosa peptidase, PaAP, that is highly expressed in chronic CF isolates. This leucine aminopeptidase is highly expressed during infection and in biofilms, and it associates with bacterial outer membrane vesicles (OMVs), structures known to contribute to virulence mechanisms in a variety of Gram-negative species and one of the major components of the biofilm matrix. We hypothesized that PaAP may play a role in P. aeruginosa biofilm formation. Using a lung epithelial cell/bacterial biofilm coculture model, we show that PaAP deletion in a clinical P. aeruginosa background alters biofilm microcolony composition to increase cellular density, while decreasing matrix polysaccharide content, and that OMVs from PaAP expressing strains but not PaAP alone or in combination with PaAP deletion strain-derived OMVs could complement this phenotype. We additionally found that OMVs from PaAP expressing strains could cause protease-mediated biofilm detachment, leading to changes in matrix and colony composition. Finally, we showed that the OMVs could also mediate the detachment of biofilms formed by both non-self P. aeruginosa strains and Klebsiella pneumoniae, another respiratory pathogen. Our findings represent novel roles for OMVs and the aminopeptidase in the modulation of P. aeruginosa biofilm architecture.ImportanceBiofilm formation by the bacterial pathogen P. aeruginosa is known to contribute to drug- resistance in nosocomial infections and chronic lung infections of cystic fibrosis patients. In order to treat these infections more successfully, the mechanisms of bacterial biofilm development must be elucidated. While both bacterially-secreted aminopeptidase and outer membrane vesicles have been shown to be abundant in P. aeruginosa biofilm matrices, the contributions of each of these factors to the steps in biofilm generation have not been well studied. This work provides new insight as to how these bacterial components mediate the formation of a robust, drug-resistant extracellular matrix and implicates outer membrane vesicles as active components of biofilm architecture, expanding our overall understanding of P. aeruginosa biofilm biology.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Celine Vidaillac ◽  
Valerie Fei Lee Yong ◽  
Marie-Stephanie Aschtgen ◽  
Jing Qu ◽  
Shuowei Yang ◽  
...  

ABSTRACT Estrogen, a major female sex steroid hormone, has been shown to promote the selection of mucoid Pseudomonas aeruginosa in the airways of patients with chronic respiratory diseases, including cystic fibrosis. This results in long-term persistence, poorer clinical outcomes, and limited therapeutic options. In this study, we demonstrate that at physiological concentrations, sex steroids, including testosterone and estriol, induce membrane stress responses in P. aeruginosa. This is characterized by increased virulence and consequent inflammation and release of proinflammatory outer membrane vesicles promoting in vivo persistence of the bacteria. The steroid-induced P. aeruginosa response correlates with the molecular polarity of the hormones and membrane fluidic properties of the bacteria. This novel mechanism of interaction between sex steroids and P. aeruginosa explicates the reported increased disease severity observed in females with cystic fibrosis and provides evidence for the therapeutic potential of the modulation of sex steroids to achieve better clinical outcomes in patients with hormone-responsive strains. IMPORTANCE Molecular mechanisms by which sex steroids interact with P. aeruginosa to modulate its virulence have yet to be reported. Our work provides the first characterization of a steroid-induced membrane stress mechanism promoting P. aeruginosa virulence, which includes the release of proinflammatory outer membrane vesicles, resulting in inflammation, host tissue damage, and reduced bacterial clearance. We further demonstrate that at nanomolar (physiological) concentrations, male and female sex steroids promote virulence in clinical strains of P. aeruginosa based on their dynamic membrane fluidic properties. This work provides, for the first-time, mechanistic insight to better understand and predict the P. aeruginosa related response to sex steroids and explain the interindividual patient variability observed in respiratory diseases such as cystic fibrosis that are complicated by gender differences and chronic P. aeruginosa infection.


2016 ◽  
Vol 60 (4) ◽  
pp. 2516-2518 ◽  
Author(s):  
Simon Devos ◽  
Stephan Stremersch ◽  
Koen Raemdonck ◽  
Kevin Braeckmans ◽  
Bart Devreese

ABSTRACTThe treatment ofStenotrophomonas maltophiliainfection with β-lactam antibiotics leads to increased release of outer membrane vesicles (OMVs), which are packed with two chromosomally encoded β-lactamases. Here, we show that these β-lactamase–packed OMVs are capable of establishing extracellular β-lactam degradation. We also show that they dramatically increase the apparent MICs of imipenem and ticarcillin for the cohabituating speciesPseudomonas aeruginosaandBurkholderia cenocepacia.


2012 ◽  
Vol 195 (2) ◽  
pp. 213-219 ◽  
Author(s):  
Aimee K. Wessel ◽  
Jean Liew ◽  
Taejoon Kwon ◽  
Edward M. Marcotte ◽  
Marvin Whiteley

ABSTRACTGram-negative bacteria produce outer membrane vesicles (OMVs) that package and deliver proteins, small molecules, and DNA to prokaryotic and eukaryotic cells. The molecular details of OMV biogenesis have not been fully elucidated, but peptidoglycan-associated outer membrane proteins that tether the outer membrane to the underlying peptidoglycan have been shown to be critical for OMV formation in multipleEnterobacteriaceae. In this study, we demonstrate that the peptidoglycan-associated outer membrane proteins OprF and OprI, but not OprL, impact production of OMVs by the opportunistic pathogenPseudomonas aeruginosa. Interestingly, OprF does not appear to be important for tethering the outer membrane to peptidoglycan but instead impacts OMV formation through modulation of the levels of thePseudomonasquinolone signal (PQS), a quorum signal previously shown by our laboratory to be critical for OMV formation. Thus, the mechanism by which OprF impacts OMV formation is distinct from that for other peptidoglycan-associated outer membrane proteins, including OprI.


2011 ◽  
Vol 77 (15) ◽  
pp. 5238-5246 ◽  
Author(s):  
Aamir Ghafoor ◽  
Iain D. Hay ◽  
Bernd H. A. Rehm

ABSTRACTPseudomonas aeruginosais an opportunistic human pathogen and has been established as a model organism to study bacterial biofilm formation. At least three exopolysaccharides (alginate, Psl, and Pel) contribute to the formation of biofilms in this organism. Here mutants deficient in the production of one or more of these polysaccharides were generated to investigate how these polymers interactively contribute to biofilm formation. Confocal laser scanning microscopy of biofilms formed in flow chambers showed that mutants deficient in alginate biosynthesis developed biofilms with a decreased proportion of viable cells than alginate-producing strains, indicating a role of alginate in viability of cells in biofilms. Alginate-deficient mutants showed enhanced extracellular DNA (eDNA)-containing surface structures impacting the biofilm architecture. PAO1 ΔpslAΔalg8overproduced Pel, and eDNA showing meshwork-like structures presumably based on an interaction between both polymers were observed. The formation of characteristic mushroom-like structures required both Psl and alginate, whereas Pel appeared to play a role in biofilm cell density and/or the compactness of the biofilm. Mutants producing only alginate, i.e., mutants deficient in both Psl and Pel production, lost their ability to form biofilms. A lack of Psl enhanced the production of Pel, and the absence of Pel enhanced the production of alginate. The function of Psl in attachment was independent of alginate and Pel. A 30% decrease in Psl promoter activity in the alginate-overproducing MucA-negative mutant PDO300 suggested inverse regulation of both biosynthesis operons. Overall, this study demonstrated that the various exopolysaccharides and eDNA interactively contribute to the biofilm architecture ofP. aeruginosa.


mSphere ◽  
2021 ◽  
Author(s):  
Peng Li ◽  
Xiuran Wang ◽  
Xiangwan Sun ◽  
Ziqiang Guan ◽  
Wei Sun

Hospital- and community-acquired infections with Pseudomonas aeruginosa cause a high rate of morbidity and mortality in patients who have underlying medical conditions. The spread of multidrug-resistant P. aeruginosa strains is becoming a great challenge for treatment using antibiotics. Thus, a vaccine as one of the alternative strategies is urgently required to prevent P. aeruginosa infection.


mSphere ◽  
2020 ◽  
Vol 5 (6) ◽  
Author(s):  
Adam C. Cooke ◽  
Catalina Florez ◽  
Elise B. Dunshee ◽  
Avery D. Lieber ◽  
Michelle L. Terry ◽  
...  

ABSTRACT Bacterial biofilms are major contributors to chronic infections in humans. Because they are recalcitrant to conventional therapy, they present a particularly difficult treatment challenge. Identifying factors involved in biofilm development can help uncover novel targets and guide the development of antibiofilm strategies. Pseudomonas aeruginosa causes surgical site, burn wound, and hospital-acquired infections and is also associated with aggressive biofilm formation in the lungs of cystic fibrosis patients. A potent but poorly understood contributor to P. aeruginosa virulence is the ability to produce outer membrane vesicles (OMVs). OMV trafficking has been associated with cell-cell communication, virulence factor delivery, and transfer of antibiotic resistance genes. Because OMVs have almost exclusively been studied using planktonic cultures, little is known about their biogenesis and function in biofilms. Several groups have shown that Pseudomonas quinolone signal (PQS) induces OMV formation in P. aeruginosa. Our group described a biophysical mechanism for this and recently showed it is operative in biofilms. Here, we demonstrate that PQS-induced OMV production is highly dynamic during biofilm development. Interestingly, PQS and OMV synthesis are significantly elevated during dispersion compared to attachment and maturation stages. PQS biosynthetic and receptor mutant biofilms were significantly impaired in their ability to disperse, but this phenotype was rescued by genetic complementation or exogenous addition of PQS. Finally, we show that purified OMVs can actively degrade extracellular protein, lipid, and DNA. We therefore propose that enhanced production of PQS-induced OMVs during biofilm dispersion facilitates cell escape by coordinating the controlled degradation of biofilm matrix components. IMPORTANCE Treatments that manipulate biofilm dispersion hold the potential to convert chronic drug-tolerant biofilm infections from protected sessile communities into released populations that are orders-of-magnitude more susceptible to antimicrobial treatment. However, dispersed cells often exhibit increased acute virulence and dissemination phenotypes. A thorough understanding of the dispersion process is therefore critical before this promising strategy can be effectively employed. Pseudomonas quinolone signal (PQS) has been implicated in early biofilm development, but we hypothesized that its function as an outer membrane vesicle (OMV) inducer may contribute at multiple stages. Here, we demonstrate that PQS and OMVs are differentially produced during Pseudomonas aeruginosa biofilm development and provide evidence that effective biofilm dispersion is dependent on the production of PQS-induced OMVs, which likely act as delivery vehicles for matrix-degrading enzymes. These findings lay the groundwork for understanding OMV contributions to biofilm development and suggest a model to explain the controlled matrix degradation that accompanies biofilm dispersion in many species.


2021 ◽  
Vol 11 ◽  
Author(s):  
Soshi Seike ◽  
Hidetomo Kobayashi ◽  
Mitsunobu Ueda ◽  
Eizo Takahashi ◽  
Keinosuke Okamoto ◽  
...  

Aeromonas spp. are Gram-negative rod-shaped bacteria ubiquitously distributed in diverse water sources. Several Aeromonas spp. are known as human and fish pathogens. Recently, attention has been focused on the relationship between bacterial biofilm formation and pathogenicity or drug resistance. However, there have been few reports on biofilm formation by Aeromonas. This study is the first to examine the in vitro formation and components of the biofilm of several Aeromonas clinical and environmental strains. A biofilm formation assay using 1% crystal violet on a polystyrene plate revealed that most Aeromonas strains used in this study formed biofilms but one strain did not. Analysis of the basic components contained in the biofilms formed by Aeromonas strains confirmed that they contained polysaccharides containing GlcNAc, extracellular nucleic acids, and proteins, as previously reported for the biofilms of other bacterial species. Among these components, we focused on several proteins fractionated by SDS-PAGE and determined their amino acid sequences. The results showed that some proteins existing in the Aeromonas biofilms have amino acid sequences homologous to functional proteins present in the outer membrane of Gram-negative bacteria. This result suggests that outer membrane components may affect the biofilm formation of Aeromonas strains. It is known that Gram-negative bacteria often release extracellular membrane vesicles from the outer membrane, so we think that the outer membrane-derived proteins found in the Aeromonas biofilms may be derived from such membrane vesicles. To examine this idea, we next investigated the ability of Aeromonas strains to form outer membrane vesicles (OMVs). Electron microscopic analysis revealed that most Aeromonas strains released OMVs outside the cells. Finally, we purified OMVs from several Aeromonas strains and examined their effect on the biofilm formation. We found that the addition of OMVs dose-dependently promoted biofilm formation, except for one strain that did not form biofilms. These results suggest that the OMVs released from the bacterial cells are closely related to the biofilm formation of Aeromonas strains.


Sign in / Sign up

Export Citation Format

Share Document