scholarly journals Outer Membrane Vesicles Released From Aeromonas Strains Are Involved in the Biofilm Formation

2021 ◽  
Vol 11 ◽  
Author(s):  
Soshi Seike ◽  
Hidetomo Kobayashi ◽  
Mitsunobu Ueda ◽  
Eizo Takahashi ◽  
Keinosuke Okamoto ◽  
...  

Aeromonas spp. are Gram-negative rod-shaped bacteria ubiquitously distributed in diverse water sources. Several Aeromonas spp. are known as human and fish pathogens. Recently, attention has been focused on the relationship between bacterial biofilm formation and pathogenicity or drug resistance. However, there have been few reports on biofilm formation by Aeromonas. This study is the first to examine the in vitro formation and components of the biofilm of several Aeromonas clinical and environmental strains. A biofilm formation assay using 1% crystal violet on a polystyrene plate revealed that most Aeromonas strains used in this study formed biofilms but one strain did not. Analysis of the basic components contained in the biofilms formed by Aeromonas strains confirmed that they contained polysaccharides containing GlcNAc, extracellular nucleic acids, and proteins, as previously reported for the biofilms of other bacterial species. Among these components, we focused on several proteins fractionated by SDS-PAGE and determined their amino acid sequences. The results showed that some proteins existing in the Aeromonas biofilms have amino acid sequences homologous to functional proteins present in the outer membrane of Gram-negative bacteria. This result suggests that outer membrane components may affect the biofilm formation of Aeromonas strains. It is known that Gram-negative bacteria often release extracellular membrane vesicles from the outer membrane, so we think that the outer membrane-derived proteins found in the Aeromonas biofilms may be derived from such membrane vesicles. To examine this idea, we next investigated the ability of Aeromonas strains to form outer membrane vesicles (OMVs). Electron microscopic analysis revealed that most Aeromonas strains released OMVs outside the cells. Finally, we purified OMVs from several Aeromonas strains and examined their effect on the biofilm formation. We found that the addition of OMVs dose-dependently promoted biofilm formation, except for one strain that did not form biofilms. These results suggest that the OMVs released from the bacterial cells are closely related to the biofilm formation of Aeromonas strains.

2019 ◽  
Author(s):  
Jiajun Wang ◽  
Rémi Terrasse ◽  
Jayesh Arun Bafna ◽  
Lorraine Benier ◽  
Mathias Winterhalter

Multi-drug resistance in Gram-negative bacteria is often associated with low permeability of the outer membrane. To investigate the role of membrane channels in the uptake of antibiotics, we extract, purify and reconstitute them into artificial planar membranes. To avoid this time-consuming procedure, here we show a robust approach using fusion of native outer membrane vesicles (OMV) into planar lipid bilayer which moreover allows also to some extend the characterization of membrane protein channels in their native environment. Two major membrane channels from <i>Escherichia coli</i>, OmpF and OmpC, were overexpressed from the host and the corresponding OMVs were collected. Each OMV fusion revealed surprisingly single or only few channel activities. The asymmetry of the OMV´s translates after fusion into the lipid membrane with the LPS dominantly present at the side of OMV addition. Compared to conventional reconstitution methods, the channels fused from OMVs containing LPS have similar conductance but a much broader distribution. The addition of Enrofloxacin on the LPS side yields somewhat higher association (<i>k<sub>on</sub></i>) and lower dissociation (<i>k<sub>off</sub></i>) rates compared to LPS-free reconstitution. We conclude that using outer membrane vesicles is a fast and easy approach for functional and structural studies of membrane channels in the native membrane.


2017 ◽  
Vol 199 (15) ◽  
Author(s):  
Jonathan B. Lynch ◽  
Rosanna A. Alegado

ABSTRACT Outer membrane vesicles (OMVs) are proteoliposome nanoparticles ubiquitously produced by Gram-negative bacteria. Typically bearing a composition similar to those of the outer membrane and periplasm of the cells from which they are derived, OMVs package an array of proteins, lipids, and nucleic acids. Once considered inconsequential by-products of bacterial growth, OMVs have since been demonstrated to mediate cellular stress relief, promote horizontal gene transfer and antimicrobial activity, and elicit metazoan inflammation. Recently, OMVs have gained appreciation as critical moderators of interorganismal dynamics. In this review, we focus on recent progress toward understanding the functions of OMVs with regard to symbiosis and ecological contexts, and we propose potential avenues for future OMV studies.


Microbiology ◽  
2014 ◽  
Vol 160 (10) ◽  
pp. 2109-2121 ◽  
Author(s):  
Heramb M. Kulkarni ◽  
Medicharla V. Jagannadham

Outer membrane vesicles (OMVs) released from Gram-negative bacteria consist of lipids, proteins, lipopolysaccharides and other molecules. OMVs are associated with several biological functions such as horizontal gene transfer, intracellular and intercellular communication, transfer of contents to host cells, and eliciting an immune response in host cells. Although hypotheses have been made concerning the mechanism of biogenesis of these vesicles, research on OMV formation is far from complete. The roles of outer membrane components, bacterial quorum sensing molecules and some specific proteins in OMV biogenesis have been studied. This review discusses the different models that have been proposed for OMV biogenesis, along with details of the biological functions of OMVs and the likely scope of future research.


2019 ◽  
Author(s):  
Caitlin N. Esoda ◽  
Meta J. Kuehn

AbstractPseudomonas aeruginosa, known as one of the leading causes of disease in cystic fibrosis (CF) patients, secretes a variety of proteases. These enzymes contribute significantly to P. aeruginosa pathogenesis and biofilm formation in the chronic colonization of CF patient lungs, as well as playing a role in infections of the cornea, burn wounds and chronic wounds. We previously characterized a secreted P. aeruginosa peptidase, PaAP, that is highly expressed in chronic CF isolates. This leucine aminopeptidase is highly expressed during infection and in biofilms, and it associates with bacterial outer membrane vesicles (OMVs), structures known to contribute to virulence mechanisms in a variety of Gram-negative species and one of the major components of the biofilm matrix. We hypothesized that PaAP may play a role in P. aeruginosa biofilm formation. Using a lung epithelial cell/bacterial biofilm coculture model, we show that PaAP deletion in a clinical P. aeruginosa background alters biofilm microcolony composition to increase cellular density, while decreasing matrix polysaccharide content, and that OMVs from PaAP expressing strains but not PaAP alone or in combination with PaAP deletion strain-derived OMVs could complement this phenotype. We additionally found that OMVs from PaAP expressing strains could cause protease-mediated biofilm detachment, leading to changes in matrix and colony composition. Finally, we showed that the OMVs could also mediate the detachment of biofilms formed by both non-self P. aeruginosa strains and Klebsiella pneumoniae, another respiratory pathogen. Our findings represent novel roles for OMVs and the aminopeptidase in the modulation of P. aeruginosa biofilm architecture.ImportanceBiofilm formation by the bacterial pathogen P. aeruginosa is known to contribute to drug- resistance in nosocomial infections and chronic lung infections of cystic fibrosis patients. In order to treat these infections more successfully, the mechanisms of bacterial biofilm development must be elucidated. While both bacterially-secreted aminopeptidase and outer membrane vesicles have been shown to be abundant in P. aeruginosa biofilm matrices, the contributions of each of these factors to the steps in biofilm generation have not been well studied. This work provides new insight as to how these bacterial components mediate the formation of a robust, drug-resistant extracellular matrix and implicates outer membrane vesicles as active components of biofilm architecture, expanding our overall understanding of P. aeruginosa biofilm biology.


Author(s):  
Carlos Fernando Macedo da Silva ◽  
Marcelo Lancellotti

Multi-resistance to antibiotics in Gram-negative bacteria has been reported in several studies, which make more effective methods of controlling and eliminating these bacteria necessary. To overcome multiresistant profiles, we used OMVs (Outer Membrane Vesicles) as carriers of levofloxacin to encapsulate and transport the drug from the extracellular medium into the cell, overcoming resistance barriers and inhibiting cell reproduction machinery. Prepackaged formulations in this manner were quite effective and, in some cases, totally inhibited bacterial growth by making the drug efficient again.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Noemi Furuyama ◽  
Marcelo Palma Sircili

Gram-negative bacteria produce outer membrane vesicles (OMVs) with 10 to 300 nm of diameter. The contribution of OMVs to bacterial pathogenesis is a topic of great interest, and their capacity to be combined with antigens impact in the future to the development of vaccines.


Sign in / Sign up

Export Citation Format

Share Document