scholarly journals Role for a Filamentous Nuclear Assembly of IFI16, DNA, and Host Factors in Restriction of Herpesviral Infection

mBio ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Philipp E. Merkl ◽  
David M. Knipe

ABSTRACTSeveral host cell nuclear factors are known to restrict herpes simplex virus 1 (HSV-1) replication, but their mechanisms of action remain to be defined. Interferon-inducible protein 16 (IFI16) and the nuclear domain 10-associated proteins, such as promyelocytic leukemia (PML) protein, localize to input viral genomes, but they are also capable of restricting progeny viral transcription. In this study, we used structured illumination microscopy to show that after HSV DNA replication, IFI16 forms nuclear filamentous structures on DNA within a subset of nuclear replication compartments in HSV-1 ICP0-null mutant virus-infected human cells. The ability to form filaments in different cell types correlates with the efficiency of restriction, and the kinetics of filament formation and epigenetic changes are similar. Thus, both are consistent with the filamentous structures being involved in epigenetic silencing of viral progeny DNA. IFI16 filaments recruit other restriction factors, including PML, Sp100, and ATRX, to aid in the restriction. Although the filaments are only in a subset of the replication compartments, IFI16 reduces the levels of elongation-competent RNA polymerase II (Pol II) in all replication compartments. Therefore, we propose that IFI16 filaments with associated restriction factors that form in replication compartments constitute a “restrictosome” structure that signals incisandtransto silence the progeny viral DNA throughout the infected cell nucleus. The IFI16 filamentous structure may constitute the first known nuclear supramolecular organizing center for signaling in the cell nucleus.IMPORTANCEMammalian cells exhibit numerous strategies to recognize and contain viral infections. The best-characterized antiviral responses are those that are induced within the cytosol by receptors that activate interferon responses or shut down translation. Antiviral responses also occur in the nucleus, yet these intranuclear innate immune responses are poorly defined at the receptor-proximal level. In this study, we explored the ability of cells to restrict infection by assembling viral DNA into transcriptionally silent heterochromatin within the nucleus. We found that the IFI16 restriction factor forms filaments on DNA within infected cells. These filaments recruit antiviral restriction factors to prevent viral replication in various cell types. Mechanistically, IFI16 filaments inhibit the recruitment of RNA polymerase II to viral genes. We propose that IFI16 filaments with associated restriction factors constitute a “restrictosome” structure that can signal to other parts of the nucleus where foreign DNA is located that it should be silenced.

1995 ◽  
Vol 108 (9) ◽  
pp. 3003-3011 ◽  
Author(s):  
B. van Steensel ◽  
M. Brink ◽  
K. van der Meulen ◽  
E.P. van Binnendijk ◽  
D.G. Wansink ◽  
...  

The cell nucleus is highly organized. Many nuclear functions are localized in discrete domains, suggesting that compartmentalization is an important aspect of the regulation and coordination of nuclear functions. We investigated the subnuclear distribution of the glucocorticoid receptor, a hormone-dependent transcription factor. By immunofluorescent labeling and confocal microscopy we found that after stimulation with the agonist dexamethasone the glucocorticoid receptor is concentrated in 1,000-2,000 clusters in the nucleoplasm. This distribution was observed in several cell types and with three different antibodies against the glucocorticoid receptor. A similar subnuclear distribution of glucocorticoid receptors was found after treatment of cells with the antagonist RU486, suggesting that the association of the glucocorticoid receptor in clusters does not require transformation of the receptor to a state that is able to activate transcription. By dual labeling we found that most dexamethasone-induced receptor clusters do not colocalize with sites of pre-mRNA synthesis. We also show that RNA polymerase II is localized in a large number of clusters in the nucleus. Glucocorticoid receptor clusters did not significantly colocalize with these RNA polymerase II clusters or with domains containing the splicing factor SC-35. Taken together, these results suggest that most clustered glucocorticoid receptor molecules are not directly involved in activation of transcription.


2005 ◽  
Vol 13 (2) ◽  
pp. 135-144 ◽  
Author(s):  
Miki Hieda ◽  
Henry Winstanley ◽  
Philip Maini ◽  
Francisco J. Iborra ◽  
Peter R. Cook

2018 ◽  
Author(s):  
David T McSwiggen ◽  
Anders S Hansen ◽  
Hervé Marie-Nelly ◽  
Sheila Teves ◽  
Alec B Heckert ◽  
...  

SummaryDuring lytic infection, Herpes Simplex Virus 1 generates replication compartments (RCs) in host nuclei that efficiently recruit protein factors, including host RNA Polymerase II (Pol II). Pol II and other cellular factors form hubs in uninfected cells that are proposed to phase separate via multivalent protein-protein interactions mediated by their intrinsically disordered regions. Using a battery of live cell microscopic techniques, we show that although RCs superficially exhibit many characteristics of phase separation, the recruitment of Pol II instead derives from nonspecific interactions with the viral DNA. We find that the viral genome remains nucleosome-free, profoundly affecting the way Pol II explores RCs by causing it to repetitively visit nearby binding sites, thereby creating local Pol II accumulations. This mechanism, distinct from phase separation, allows viral DNA to outcompete host DNA for cellular proteins. Our work provides new insights into the strategies used to create local molecular hubs in cells.


2021 ◽  
Author(s):  
Agnieszka Pancholi ◽  
Tim Klingberg ◽  
Weichun Zhang ◽  
Roshan Prizak ◽  
Irina Mamontova ◽  
...  

AbstractIt is essential for cells to control which genes are transcribed into RNA. In eukaryotes, two major control points are recruitment of RNA polymerase II (Pol II) into a paused state and subsequent pause release to begin transcript elongation. Pol II associates with macromolecular clusters during recruitment, but it remains unclear how Pol II recruitment and pause release might affect these clusters. Here, we show that clusters exhibit morphologies that are in line with wetting of chromatin by a liquid phase enriched in recruited Pol II. Applying instantaneous structured illumination microscopy and stimulated emission double depletion microscopy to pluripotent zebrafish embryos, we find recruited Pol II associated with large clusters, and elongating Pol II with dispersed clusters. A lattice kinetic Monte Carlo model representing recruited Pol II as a liquid phase reproduced the observed cluster morphologies. In this model, chromatin is a copolymer chain containing regions that attract or repel recruited Pol II, supporting droplet formation by wetting or droplet dispersal, respectively.


2014 ◽  
Vol 35 (2) ◽  
pp. 468-478 ◽  
Author(s):  
Tristan T. Eifler ◽  
Wei Shao ◽  
Koen Bartholomeeusen ◽  
Koh Fujinaga ◽  
Stefanie Jäger ◽  
...  

Transcriptional cyclin-dependent kinases (CDKs) regulate RNA polymerase II initiation and elongation as well as cotranscriptional mRNA processing. In this report, we describe an important role for CDK12 in the epidermal growth factor (EGF)-induced c-FOS proto-oncogene expression in mammalian cells. This kinase was found in the exon junction complexes (EJC) together with SR proteins and was thus recruited to RNA polymerase II. In cells depleted of CDK12 or eukaryotic translation initiation factor 4A3 (eIF4A3) from the EJC, EGF induced fewer c-FOS transcripts. In these cells, phosphorylation of serines at position 2 in the C-terminal domain (CTD) of RNA polymerase II, as well as levels of cleavage-stimulating factor 64 (Cstf64) and 73-kDa subunit of cleavage and polyadenylation specificity factor (CPSF73), was reduced at the c-FOS gene. These effects impaired 3′ end processing of c-FOS transcripts. Mutant CDK12 proteins lacking their Arg-Ser-rich (RS) domain or just the RS domain alone acted as dominant negative proteins. Thus, CDK12 plays an important role in cotranscriptional processing of c-FOS transcripts.


2019 ◽  
Vol 94 (5) ◽  
Author(s):  
Claire H. Birkenheuer ◽  
Joel D. Baines

ABSTRACT Herpes simplex virus 1 (HSV-1) genes are transcribed by cellular RNA polymerase II (Pol II). Expression of viral immediate early (α) genes is followed sequentially by early (β), late (γ1), and true late (γ2) genes. We used precision nuclear run-on with deep sequencing to map and to quantify Pol II on the HSV-1(F) genome with single-nucleotide resolution. Approximately 30% of total Pol II relocated to viral genomes within 3 h postinfection (hpi), when it occupied genes of all temporal classes. At that time, Pol II on α genes accumulated most heavily at promoter-proximal pause (PPP) sites located ∼60 nucleotides downstream of the transcriptional start site, while β genes bore Pol II more evenly across gene bodies. At 6 hpi, Pol II increased on γ1 and γ2 genes while Pol II pausing remained prominent on α genes. At that time, average cytoplasmic mRNA expression from α and β genes decreased, relative to levels at 3 hpi, while γ1 relative expression increased slightly and γ2 expression increased more substantially. Cycloheximide treatment during the first 3 h reduced the amount of Pol II associated with the viral genome and confined most of the remaining Pol II to α gene PPP sites. Inhibition of both cyclin-dependent kinase 9 activity and viral DNA replication reduced Pol II on the viral genome and restricted much of the remaining Pol II to PPP sites. IMPORTANCE These data suggest that viral transcription is regulated not only by Pol II recruitment to viral genes but also by control of elongation into viral gene bodies. We provide a detailed map of Pol II occupancy on the HSV-1 genome that clarifies features of the viral transcriptome, including the first identification of Pol II PPP sites. The data indicate that Pol II is recruited to late genes early in infection. Comparing α and β gene occupancy at PPP sites and gene bodies suggests that Pol II is released more efficiently into the bodies of β genes than α genes at 3 hpi and that repression of α gene expression late in infection is mediated by prolonged promoter-proximal pausing. In addition, DNA replication is required to maintain full Pol II occupancy on viral DNA and to promote elongation on late genes later in infection.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ohad Glaich ◽  
Shivang Parikh ◽  
Rachel E. Bell ◽  
Keren Mekahel ◽  
Maya Donyo ◽  
...  

AbstractMicroRNA (miRNA) biogenesis initiates co-transcriptionally, but how the Microprocessor machinery pinpoints the locations of short precursor miRNA sequences within long flanking regions of the transcript is not known. Here we show that miRNA biogenesis depends on DNA methylation. When the regions flanking the miRNA coding sequence are highly methylated, the miRNAs are more highly expressed, have greater sequence conservation, and are more likely to drive cancer-related phenotypes than miRNAs encoded by unmethylated loci. We show that the removal of DNA methylation from miRNA loci leads to their downregulation. Further, we found that MeCP2 binding to methylated miRNA loci halts RNA polymerase II elongation, leading to enhanced processing of the primary miRNA by Drosha. Taken together, our data reveal that DNA methylation directly affects miRNA biogenesis.


Sign in / Sign up

Export Citation Format

Share Document