scholarly journals Transient DNA Binding Induces RNA Polymerase II Compartmentalization During Herpesviral Infection Distinct From Phase Separation

2018 ◽  
Author(s):  
David T McSwiggen ◽  
Anders S Hansen ◽  
Hervé Marie-Nelly ◽  
Sheila Teves ◽  
Alec B Heckert ◽  
...  

SummaryDuring lytic infection, Herpes Simplex Virus 1 generates replication compartments (RCs) in host nuclei that efficiently recruit protein factors, including host RNA Polymerase II (Pol II). Pol II and other cellular factors form hubs in uninfected cells that are proposed to phase separate via multivalent protein-protein interactions mediated by their intrinsically disordered regions. Using a battery of live cell microscopic techniques, we show that although RCs superficially exhibit many characteristics of phase separation, the recruitment of Pol II instead derives from nonspecific interactions with the viral DNA. We find that the viral genome remains nucleosome-free, profoundly affecting the way Pol II explores RCs by causing it to repetitively visit nearby binding sites, thereby creating local Pol II accumulations. This mechanism, distinct from phase separation, allows viral DNA to outcompete host DNA for cellular proteins. Our work provides new insights into the strategies used to create local molecular hubs in cells.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
David Trombley McSwiggen ◽  
Anders S Hansen ◽  
Sheila S Teves ◽  
Hervé Marie-Nelly ◽  
Yvonne Hao ◽  
...  

RNA Polymerase II (Pol II) and transcription factors form concentrated hubs in cells via multivalent protein-protein interactions, often mediated by proteins with intrinsically disordered regions. During Herpes Simplex Virus infection, viral replication compartments (RCs) efficiently enrich host Pol II into membraneless domains, reminiscent of liquid-liquid phase separation. Despite sharing several properties with phase-separated condensates, we show that RCs operate via a distinct mechanism wherein unrestricted nonspecific protein-DNA interactions efficiently outcompete host chromatin, profoundly influencing the way DNA-binding proteins explore RCs. We find that the viral genome remains largely nucleosome-free, and this increase in accessibility allows Pol II and other DNA-binding proteins to repeatedly visit nearby DNA binding sites. This anisotropic behavior creates local accumulations of protein factors despite their unrestricted diffusion across RC boundaries. Our results reveal underappreciated consequences of nonspecific DNA binding in shaping gene activity, and suggest additional roles for chromatin in modulating nuclear function and organization.


2019 ◽  
Vol 94 (5) ◽  
Author(s):  
Claire H. Birkenheuer ◽  
Joel D. Baines

ABSTRACT Herpes simplex virus 1 (HSV-1) genes are transcribed by cellular RNA polymerase II (Pol II). Expression of viral immediate early (α) genes is followed sequentially by early (β), late (γ1), and true late (γ2) genes. We used precision nuclear run-on with deep sequencing to map and to quantify Pol II on the HSV-1(F) genome with single-nucleotide resolution. Approximately 30% of total Pol II relocated to viral genomes within 3 h postinfection (hpi), when it occupied genes of all temporal classes. At that time, Pol II on α genes accumulated most heavily at promoter-proximal pause (PPP) sites located ∼60 nucleotides downstream of the transcriptional start site, while β genes bore Pol II more evenly across gene bodies. At 6 hpi, Pol II increased on γ1 and γ2 genes while Pol II pausing remained prominent on α genes. At that time, average cytoplasmic mRNA expression from α and β genes decreased, relative to levels at 3 hpi, while γ1 relative expression increased slightly and γ2 expression increased more substantially. Cycloheximide treatment during the first 3 h reduced the amount of Pol II associated with the viral genome and confined most of the remaining Pol II to α gene PPP sites. Inhibition of both cyclin-dependent kinase 9 activity and viral DNA replication reduced Pol II on the viral genome and restricted much of the remaining Pol II to PPP sites. IMPORTANCE These data suggest that viral transcription is regulated not only by Pol II recruitment to viral genes but also by control of elongation into viral gene bodies. We provide a detailed map of Pol II occupancy on the HSV-1 genome that clarifies features of the viral transcriptome, including the first identification of Pol II PPP sites. The data indicate that Pol II is recruited to late genes early in infection. Comparing α and β gene occupancy at PPP sites and gene bodies suggests that Pol II is released more efficiently into the bodies of β genes than α genes at 3 hpi and that repression of α gene expression late in infection is mediated by prolonged promoter-proximal pausing. In addition, DNA replication is required to maintain full Pol II occupancy on viral DNA and to promote elongation on late genes later in infection.


2018 ◽  
Author(s):  
M. Boehning ◽  
C. Dugast-Darzacq ◽  
M. Rankovic ◽  
A. S. Hansen ◽  
T. Yu ◽  
...  

The carboxy-terminal domain (CTD) of RNA polymerase (Pol) II is an intrinsically disordered low-complexity region that is critical for pre-mRNA transcription and processing. The CTD consists of hepta-amino acid repeats varying in number from 52 in humans to 26 in yeast. Here we report that human and yeast CTDs undergo cooperative liquid phase separation at increasing protein concentration, with the shorter yeast CTD forming less stable droplets. In human cells, truncation of the CTD to the length of the yeast CTD decreases Pol II clustering and chromatin association whereas CTD extension has the opposite effect. CTD droplets can incorporate intact Pol II and are dissolved by CTD phosphorylation with the transcription initiation factor IIH kinase CDK7. Together with published data, our results suggest that Pol II forms clusters/hubs at active genes through interactions between CTDs and with activators, and that CTD phosphorylation liberates Pol II enzymes from hubs for promoter escape and transcription elongation.


2018 ◽  
Vol 92 (8) ◽  
pp. e02184-17 ◽  
Author(s):  
Claire H. Birkenheuer ◽  
Charles G. Danko ◽  
Joel D. Baines

ABSTRACTHerpes simplex virus 1 (HSV-1) transcription is mediated by cellular RNA polymerase II (Pol II). Recent studies investigating how Pol II transcription of host genes is altered after HSV-1 are conflicting. Chromatin immunoprecipitation sequencing (ChIP-seq) studies suggest that Pol II is almost completely removed from host genes at 4 h postinfection (hpi), while 4-thiouridine (4SU) labeling experiments show that host transcription termination is extended at 7 hpi, implying that a significant amount of Pol II remains associated with host genes in infected cells. To address this discrepancy, we used precision nuclear run-on analysis (PRO-seq) to determine the location of Pol II to single-base-pair resolution in combination with quantitative reverse transcription-PCR (qRT-PCR) analysis at 3 hpi. HSV-1 decreased Pol II on approximately two-thirds of cellular genes but increased Pol II on others. For more than 85% of genes for which transcriptional termination could be statistically assessed, Pol II was displaced to positions downstream of the normal termination zone, suggesting extensive termination defects. Pol II amounts at the promoter, promoter-proximal pause site, and gene body were also modulated in a gene-specific manner. qRT-PCR of selected RNAs showed that HSV-1-induced extension of the termination zone strongly correlated with decreased RNA and mRNA accumulation. However, HSV-1-induced increases of Pol II occupancy on genes without termination zone extension correlated with increased cytoplasmic mRNA. Functional grouping of genes with increased Pol II occupancy suggested an upregulation of exosome secretion and downregulation of apoptosis, both of which are potentially beneficial to virus production.IMPORTANCEThis study provides a map of RNA polymerase II location on host genes after infection with HSV-1 with greater detail than previous ChIP-seq studies and rectifies discrepancies between ChIP-seq data and 4SU labeling experiments with HSV-1. The data show the effects that a given change in RNA Pol II location on host genes has on the abundance of different RNA types, including nuclear, polyadenylated mRNA and cytoplasmic, polyadenylated mRNA. It gives a clearer understanding of how HSV-1 augments host transcription of some genes to provide an environment favorable to HSV-1 replication.


2015 ◽  
Vol 90 (5) ◽  
pp. 2503-2513 ◽  
Author(s):  
Robert G. Abrisch ◽  
Tess M. Eidem ◽  
Petro Yakovchuk ◽  
Jennifer F. Kugel ◽  
James A. Goodrich

ABSTRACTLytic infection by herpes simplex virus 1 (HSV-1) triggers a change in many host cell programs as the virus strives to express its own genes and replicate. Part of this process is repression of host cell transcription by RNA polymerase II (Pol II), which also transcribes the viral genome. Here, we describe a global characterization of Pol II occupancy on the viral and host genomes in response to HSV-1 infection using chromatin immunoprecipitation followed by deep sequencing (ChIP-seq). The data reveal near-complete loss of Pol II occupancy throughout host cell mRNA genes, in both their bodies and promoter-proximal regions. Increases in Pol II occupancy of host cell genes, which would be consistent with robust transcriptional activation, were not observed. HSV-1 infection induced a more potent and widespread repression of Pol II occupancy than did heat shock, another cellular stress that widely represses transcription. Concomitant with the loss of host genome Pol II occupancy, we observed Pol II covering the HSV-1 genome, reflecting a high level of viral gene transcription. Interestingly, the positions of the peaks of Pol II occupancy at HSV-1 and host cell promoters were different. The primary peak of Pol II occupancy at HSV-1 genes is ∼170 bp upstream of where it is positioned at host cell genes, suggesting that specific steps in transcription are regulated differently at HSV-1 genes than at host cell mRNA genes.IMPORTANCEWe investigated the effect of herpes simplex virus 1 (HSV-1) infection on transcription of host cell and viral genes by RNA polymerase II (Pol II). The approach we used was to determine how levels of genome-bound Pol II changed after HSV-1 infection. We found that HSV-1 caused a profound loss of Pol II occupancy across the host cell genome. Increases in Pol II occupancy were not observed, showing that no host genes were activated after infection. In contrast, Pol II occupied the entire HSV-1 genome. Moreover, the pattern of Pol II at HSV-1 genes differed from that on host cell genes, suggesting a unique mode of viral gene transcription. These studies provide new insight into how HSV-1 causes changes in the cellular program of gene expression and how the virus coopts host Pol II for its own use.


Author(s):  
Priyanka Barman ◽  
Rwik Sen ◽  
Amala Kaja ◽  
Jannatul Ferdoush ◽  
Shalini Guha ◽  
...  

San1 ubiquitin ligase is involved in nuclear protein quality control via its interaction with intrinsically disordered proteins for ubiquitylation and proteasomal degradation. Since several transcription/chromatin regulatory factors contain intrinsically disordered domains and can be inhibitory to transcription when in excess, San1 might be involved in transcription regulation. To address this, we analyzed the role of San1 in genome-wide association of TBP [that nucleates pre-initiation complex (PIC) formation for transcription initiation] and RNA polymerase II (Pol II). Our results reveal the roles of San1 in regulating TBP recruitment to the promoters and Pol II association with the coding sequences, and hence PIC formation and coordination of elongating Pol II, respectively. Consistently, transcription is altered in the absence of San1. Such transcriptional alteration is associated with impaired ubiquitylation and proteasomal degradation of Spt16 and gene association of Paf1, but not the incorporation of centromeric histone, Cse4, into the active genes in Δsan1 . Collectively, our results demonstrate distinct functions of a nuclear protein quality control factor in regulating the genome-wide PIC formation and elongating Pol II (and hence transcription), thus unraveling new gene regulatory mechanisms.


2021 ◽  
Author(s):  
Adam W Whisnant ◽  
Oliver Mathias Dyck Dionisi ◽  
Arnhild Grothey ◽  
Julia M Rappold ◽  
Ana Luiza Marante ◽  
...  

Transcriptional activity of RNA polymerase II (Pol II) is orchestrated by post-translational modifications of the C-terminal domain (CTD) of the largest Pol II subunit, RPB1. Herpes Simplex Virus type 1 (HSV-1) usurps the cellular transcriptional machinery during lytic infection to efficiently express viral mRNA and shut down host gene expression. The viral immediate-early protein ICP22 interferes with serine 2 phosphorylation (pS2) of the Pol II CTD by targeting CDK9. The functional implications of this are poorly understood. Here, we report that HSV-1 also induces a global loss of serine 7 phosphorylation (pS7). This effect was dependent on the expression of the two viral immediate-early proteins, ICP22 and ICP27. While lytic HSV-1 infection results in efficient Pol II degradation late in infection, we show that pS2/S7 loss precedes the drop in Pol II level. Interestingly, mutation of the RPB1 polyubiquitination site mutation K1268, which prevents proteasomal RPB1 degradation during transcription-coupled DNA repair, displayed loss of pS2/S7 but retained much higher overall RPB1 protein levels even at late times of infection, indicating that this pathway mediates bulk Pol II protein loss late in infection but is not involved in early CTD dysregulation. Using α-amanitin-resistant CTD mutants, we observed differential requirements for Ser2 and Ser7 for production of viral proteins, with Ser2 facilitating viral immediate-early gene expression and Ser7 appearing dispensable. Despite dysregulation of CTD phosphorylation and different requirements for Ser2/7, all CTD modifications tested could be visualized in viral replication compartments by immunofluorescence. These data expand the known means that HSV-1 employs to create pro-viral transcriptional environments at the expense of host responses.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Sarah E Dremel ◽  
Neal A DeLuca

Herpes simplex virus-1 (HSV-1) replicates within the nucleus coopting the host’s RNA Polymerase II (Pol II) machinery for production of viral mRNAs culminating in host transcriptional shut off. The mechanism behind this rapid reprogramming of the host transcriptional environment is largely unknown. We identified ICP4 as responsible for preferential recruitment of the Pol II machinery to the viral genome. ICP4 is a viral nucleoprotein which binds double-stranded DNA. We determined ICP4 discriminately binds the viral genome due to the absence of cellular nucleosomes and high density of cognate binding sites. We posit that ICP4’s ability to recruit not just Pol II, but also more limiting essential components, such as TBP and Mediator, create a competitive transcriptional environment. These distinguishing characteristics ultimately result in a rapid and efficient reprogramming of the host’s transcriptional machinery, which does not occur in the absence of ICP4.


2021 ◽  
Author(s):  
Sarah E Dremel ◽  
Frances L Sivrich ◽  
Jessica M Tucker ◽  
Britt A Glaunsinger ◽  
Neal A DeLuca

RNA Polymerase III (Pol III) transcribes noncoding RNA, including transfer RNA (tRNA), and acts as a pathogen sensor during the innate immune response. To promote enhanced proliferation, the Pol III machinery is commonly targeted during cancer and viral infection. Herein we employ DM-RNA-Seq, 4SU-Seq, ChIP-Seq, and ATAC-Seq to characterize how Herpes Simplex Virus-1 (HSV-1) perturbs the Pol III landscape. We find that HSV-1 stimulates tRNA expression 10-fold, with mature tRNAs exhibiting a 2-fold increase within 12 hours of infection. Perturbation of host tRNA synthesis requires nuclear viral entry, but not synthesis of specific viral transcripts, nascent viral genomes, or viral progeny. Host tRNA with a specific codon bias were not targeted, rather increased transcription was observed from euchromatic, actively transcribed loci. tRNA upregulation is linked to unique crosstalk between the Pol II and III transcriptional machinery. While viral infection is known to mediate host transcriptional shut off and lead to a depletion of Pol II on host mRNA promoters, we find that Pol II binding to tRNA loci increases. Finally, we report Pol III and associated factors bind the HSV genome, which suggests a previously unrecognized role in HSV-1 gene expression. These data provide insight into novel mechanisms by which HSV-1 alters the host nuclear environment, shifting key processes in favor of the pathogen.


Sign in / Sign up

Export Citation Format

Share Document