scholarly journals Myeloid-Derived Suppressor Cells Mediate T Cell Dysfunction in Nonhuman Primate TB Granulomas

mBio ◽  
2021 ◽  
Author(s):  
Bindu Singh ◽  
Dhiraj K. Singh ◽  
Shashank R. Ganatra ◽  
Ruby A. Escobedo ◽  
Shabaana Khader ◽  
...  

Myeloid cells are immunocytes of innate origin that orchestrate the first response toward pathogens via immune surveillance (uptake and killing), antigen presentation, and initiation of adaptive immunity by T cell stimulation. However, MDSCs are a subset of innate immunocytes that deviate to an immunoregulatory phenotype.

2012 ◽  
Vol 87 (3) ◽  
pp. 1477-1490 ◽  
Author(s):  
Aiping Qin ◽  
Weiping Cai ◽  
Ting Pan ◽  
Kang Wu ◽  
Qiong Yang ◽  
...  

ABSTRACTT lymphocyte dysfunction contributes to human immunodeficiency virus type 1 (HIV-1) disease progression by impairing antivirus cellular immunity. However, the mechanisms of HIV-1 infection-mediated T cell dysfunction are not completely understood. Here, we provide evidence that expansion of monocytic myeloid-derived suppressor cells (M-MDSCs) suppressed T cell function in HIV-1-infected individuals. We observed a dramatic elevation of M-MDSCs (HLA-DR−/lowCD11b+CD33+/highCD14+CD15−cells) in the peripheral blood of HIV-1-seropositive subjects (n= 61) compared with healthy controls (n= 51), despite efficacious antiretroviral therapy for nearly 2 years. The elevated M-MDSC frequency in HIV-1+subjects correlated with prognostic HIV-1 disease markers, including the HIV-1 load (r= 0.5957;P< 0.0001), CD4+T cell loss (r= −0.5312;P< 0.0001), and activated T cells (r= 0.4421;P= 0.0004). Functional studies showed that M-MDSCs from HIV-1+subjects suppressed T cell responses in both HIV-1-specific and antigen-nonspecific manners; this effect was dependent on the induction of arginase 1 and required direct cell-cell contact. Further investigations revealed that direct HIV-1 infection or culture with HIV-1-derived Tat protein significantly enhanced human MDSC generationin vitro, and MDSCs from healthy donors could be directly infected by HIV-1 to facilitate HIV-1 replication and transmission, indicating that a positive-feedback loop between HIV-1 infection and MDSC expansion existed. In summary, our studies revealed a novel mechanism of T cell dysfunction in HIV-1-infected individuals and suggested that targeting MDSCs may be a promising strategy for HIV-1 immunotherapy.


Blood ◽  
2020 ◽  
Author(s):  
Paul Collins ◽  
Christopher P Fox ◽  
Lindsay C George ◽  
Hayden Pearce ◽  
Gordon Brendan Ryan ◽  
...  

Chronic active Epstein Barr virus (CAEBV) typically presents as persistent infectious mononucleosis-like disease and/or haemophagocytic lymphohistocytosis, reflecting ectopic EBV infection and lymphoproliferation of T and/or NK-cells. Clinical behaviour ranges from indolent, stable disease through to rapidly progressive, life-threatening disease. Whilst it is thought the chronicity and/or progression reflect an escape from immune control, very little is known about the phenotype and function of the infected cells versus co-resident non-infected population, nor about the mechanisms that could underpin their evasion of host immune surveillance. To investigate these questions, we developed a multicolour flow cytometry technique combining phenotypic and functional marker staining with in-situ hybridisation for the EBER RNAs expressed in every infected cell. This allows the identification, phenotyping and functional comparison of infected (EBERPOS) and non-infected (EBERNEG) lymphocyte subset(s) in patients' blood samples ex vivo. We have characterised CAEBV and HLH cases with monoclonal populations of discrete EBV-activated T-cell subsets, in some cases accompanied by EBV-activated NK-cell subsets, with longitudinal data on the infected cells' progression despite standard steroid-based therapy. Given that cytotoxic CD8+ T-cells with relevant EBV antigen specificity were detectable in the blood of the best studied patient, we searched for means whereby host surveillance might be impaired. This revealed a unique feature in almost every CAEBV patient studied: the presence of large numbers of myeloid derived suppressor cells which exhibited robust inhibition of T-cell growth. We suggest that their influence is likely to explain the host's failure to contain EBV-positive T/NK-cell proliferation.


2006 ◽  
Vol 176 (4) ◽  
pp. 2085-2094 ◽  
Author(s):  
Valeriya P. Makarenkova ◽  
Vishal Bansal ◽  
Benjamin M. Matta ◽  
Lori Ann Perez ◽  
Juan B. Ochoa

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Amy W Ku ◽  
Jason B Muhitch ◽  
Colin A Powers ◽  
Michael Diehl ◽  
Minhyung Kim ◽  
...  

Myeloid-derived suppressor cells (MDSC) contribute to an immunosuppressive network that drives cancer escape by disabling T cell adaptive immunity. The prevailing view is that MDSC-mediated immunosuppression is restricted to tissues where MDSC co-mingle with T cells. Here we show that splenic or, unexpectedly, blood-borne MDSC execute far-reaching immune suppression by reducing expression of the L-selectin lymph node (LN) homing receptor on naïve T and B cells. MDSC-induced L-selectin loss occurs through a contact-dependent, post-transcriptional mechanism that is independent of the major L-selectin sheddase, ADAM17, but results in significant elevation of circulating L-selectin in tumor-bearing mice. Even moderate deficits in L-selectin expression disrupt T cell trafficking to distant LN. Furthermore, T cells preconditioned by MDSC have diminished responses to subsequent antigen exposure, which in conjunction with reduced trafficking, severely restricts antigen-driven expansion in widely-dispersed LN. These results establish novel mechanisms for MDSC-mediated immunosuppression that have unanticipated implications for systemic cancer immunity.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii109-ii110
Author(s):  
Aida Karachi ◽  
Farhad Dastmalchi ◽  
Ashley O’Malley ◽  
Changlin Yang ◽  
Duane Mitchell ◽  
...  

Abstract Temozolomide was recently shown to cause peripheral and intra-tumoral T cell dysfunction in a dosing schedule dependent fashion. Standard dose (SD) temozolomide (TMZ) resulted in T cell dysfunction precluding response to immune checkpoint inhibition that was avoided with a metronomic dosing (MD) schedule. Building on these studies, we investigated the TMZ-induced immune changes in tumor and non-tumor bearing models to understand the interaction of an intracranial tumor on host immunity. C57BL/6 mice underwent intracranial implantation of GL-261 tumor cells. Tumor bearing animals and naïve animals with no tumor were treated with standard dose (50 mg/kg x 5 days) or metronomic dose (25mg/kg x 10 days) of TMZ. Peripheral blood and spleens were collected for flow cytometry, ELISA and luciferase killing assay. Tumor bearing animals treated with SD TMZ demonstrated an increase in circulating myeloid derived suppressor cells (MDSCs), an upregulation of exhaustion markers on endogenous host CD8 T cells (TIM3, LAG3) and a decrease in IFN-gamma secretion from adoptively transferred T cells (tested via ELISA). The cell killing capability of adoptively transferred T cells was not reduced after exposure to a TMZ treated host. Non-tumor bearing animals treated with SD TMZ did not demonstrate an increase in circulating MDSCs or exhaustion markers on endogenous T cells. IFN-gamma secretion from adoptively transferred T cells was still reduced in these animals. The host immune dysfunction induced by TMZ is dependent on the presence of an intracranial malignancy. The mechanisms causing these changes are under active investigation.


1993 ◽  
Vol 22 (2-3) ◽  
pp. 194-200 ◽  
Author(s):  
Jonathan Heeney ◽  
Richard Jonker ◽  
Wim Koornstra ◽  
Rob Dubbes ◽  
Henk Niphuis ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A504-A504
Author(s):  
Luis Carvajal ◽  
Luciana Gneo ◽  
Carmela De Santo ◽  
Matt Perez ◽  
Tracy Garron ◽  
...  

BackgroundMyeloid-derived suppressor cells (MDSCs) accumulate in the blood and tumor microenvironment (TME) and suppress anti-tumor immune responses.1 Cancer cells express the granulocyte-macrophage colony-stimulating factor (GM-CSF), which drives MDSC differentiation and function.2 3 4 It is upregulated in several cancers, including mesothelioma, pancreatic and colorectal, and it is linked to higher levels of intra-tumoral MDSCs and poorer overall survival.2 4 5 In animal models, knockdown of GM-CSF in pancreatic epithelium or pancreatic mesenchymal stem cells inhibits tumorigenesis, reduces intra-tumor MDSCs and enhances CD8+ T cell accumulation.6 7 8 Therefore, targeting the GM-CSF receptor alpha (GM-CSFRα) on MDSCs is an attractive strategy to restore anti-tumor immunity. Mavrilimumab is a clinical stage fully human monoclonal antibody that blocks GM-CSFRα. It has demonstrated efficacy and acceptable safety profile in patients with rheumatoid arthritis, and it’s currently undergoing investigation in phase II studies in giant cell arteritis and in patients with severe COVID-19 pneumonia and hyper-inflammation (NCT03827018, NCT04397497, respectively). The present study investigates its potential as a therapeutic strategy to target MDSCs in the TME as an adjuvant to immunotherapy.MethodsCancer cell supernatants were collected when cells reached confluency. Human GM-CSF was measured by ELISA. Healthy donor CD14+ monocytes were incubated (± mavrilimumab) with cancer cell supernatants for either 3 or 6 days followed by phenotypic analysis (CD14, CD33, HLA-DR, CD11b, CD206, CD80, PD-L1, Arginase-1) by flow cytometry. On day 3, autologous CD3+ T cells were stimulated with CD3/CD28 and IL-2 and co-cultured with putative MDSCs for 5 days. T-cell proliferation was evaluated by measuring carboxyfluorescein succinimidyl ester (CFSE) dilution in CD4+ and CD8+ T cells by flow cytometry.ResultsGM-CSF is expressed in the supernatant of cancer cell lines (HCT116, SW-480, Panc-1, Capan-1). Human monocytes cultured with conditioned medium from colorectal carcinoma (SW-480) or pancreatic adenocarcinoma (Capan-1) show downregulation of HLA-DR, increased expression of PD-L1, Arg-1, CD206, and can suppress T-cell proliferation in-vitro. Similarly, peripheral blood monocytes purified from pancreatic cancer patients suppress T-cell proliferation ex-vivo. Notably, Mavrilimumab inhibits the polarization of healthy donor monocytes to M-MDSCs and restores T-cell proliferation.ConclusionsTargeting of GM-CSFRα with mavrilimumab may alleviate the pro-tumorigenic and immunosuppressive functions of MDSCs in the TME. Future clinical studies should evaluate whether targeting of the GM-CSFRα in combination with immune checkpoint inhibitors is a viable therapeutic option to bolster their efficacy.Ethics ApprovalThe study was approved by the Institute of Immunology and Immunotherapy, University of Birmingham, UK Ethics Board. Healthy volunteer human material was obtained from commercial sources and approved by Stemexpress Institutional Review Board (IRB).ReferencesLaw AMK, Valdes-Mora F, Gallego-Ortega D. Myeloid-Derived Suppressor Cells as a Therapeutic Target for Cancer. Cells 2020;9(3):561.Khanna S, Graef S, Mussai F, et al. Tumor-Derived GM-CSF Promotes Granulocyte Immunosuppression in Mesothelioma Patients. Clin Cancer Res 2018;24(12):2859–2872.Dolcetti L, Peranzoni E, Ugel S, et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 2010;40(1):22–35.Takeuchi S, Baghdadi M, Tsuchikawa T, et al. Chemotherapy-derived inflammatory responses accelerate the formation of immunosuppressive myeloid cells in the tissue microenvironment of human pancreatic cancer. Cancer Res 2015;75(13):2629–2640.Chen Y, Zhao Z, Chen Y, et al. An epithelial-to-mesenchymal transition-inducing potential of granulocyte macrophage colony-stimulating factor in colon cancer. Sci Rep 2017;7(1):8265.Bayne LJ, Beatty GL, Jhala N, et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 2012;21(6):822–835.Pylayeva-Gupta Y, Lee KE, Hajdu CH, Miller G, Bar-Sagi D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 2012;21(6):836–847.Waghray M, Yalamanchili M, Dziubinski M, et al. GM-CSF mediates mesenchymal-epithelial cross-talk in pancreatic cancer. Cancer Discov 2016;6(8):886–899.


2021 ◽  
Vol 7 (18) ◽  
pp. eabd2710
Author(s):  
Chen Zhu ◽  
Karen O. Dixon ◽  
Kathleen Newcomer ◽  
Guangxiang Gu ◽  
Sheng Xiao ◽  
...  

T cell exhaustion has been associated with poor prognosis in persistent viral infection and cancer. Conversely, in the context of autoimmunity, T cell exhaustion has been favorably correlated with long-term clinical outcome. Understanding the development of exhaustion in autoimmune settings may provide underlying principles that can be exploited to quell autoreactive T cells. Here, we demonstrate that the adaptor molecule Bat3 acts as a molecular checkpoint of T cell exhaustion, with deficiency of Bat3 promoting a profound exhaustion phenotype, suppressing autoreactive T cell–mediated neuroinflammation. Mechanistically, Bat3 acts as a critical mTORC2 inhibitor to suppress Akt function. As a result, Bat3 deficiency leads to increased Akt activity and FoxO1 phosphorylation, indirectly promoting Prdm1 expression. Transcriptional analysis of Bat3−/− T cells revealed up-regulation of dysfunction-associated genes, concomitant with down-regulation of genes associated with T cell effector function, suggesting that absence of Bat3 can trigger T cell dysfunction even under highly proinflammatory autoimmune conditions.


Sign in / Sign up

Export Citation Format

Share Document