scholarly journals Insulinase-like Protease 1 Contributes to Macrogamont Formation in Cryptosporidium parvum

mBio ◽  
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Rui Xu ◽  
Yaoyu Feng ◽  
Lihua Xiao ◽  
L. David Sibley

ABSTRACT The apicomplexan parasite Cryptosporidium parvum contains an expanded family of 22 insulinase-like proteases (INS), a feature that contrasts with their otherwise streamlined genome. Here, we examined the function of INS1, which is most similar to the human insulinase protease that cleaves a variety of small peptide substrates. INS1 is an M16A clan member and contains a signal peptide, an N-terminal domain with the HXXEH active site, followed by three inactive domains. Unlike previously studied C. parvum INS proteins that are expressed in sporozoites and during merogony, INS1 was expressed exclusively in macrogamonts, where it was localized in small cytoplasmic vesicles. Although INS1 did not colocalize with the oocyst wall protein recognized by the antibody OW50, immune-electron microscopy indicated that INS1 resides in small vesicles in the secretory system. Notably, these small INS1-positive vesicles were often in close proximity to large OW50-positive vacuoles resembling wall-forming bodies, which contain precursors for oocyst wall formation. Genetic deletion of INS1, or replacement with an active-site mutant, resulted in lower formation of macrogamonts in vitro and reduced oocyst shedding in vivo. Our findings reveal that INS1 functions in the formation or maturation of macrogamonts and that its loss results in attenuated virulence in immunocompromised mice. IMPORTANCE Cryptosporidiosis is a debilitating diarrheal disease in young children in developing countries. The absence of effective treatments or vaccines makes this infection very difficult to manage in susceptible populations. Although the oral dose of oocysts needed to cause infection is low, infected individuals shed very high numbers of oocysts, readily contaminating the environment. Our studies demonstrate that the protease INS1 is important for formation of female sexual stages and that in its absence, parasites produce fewer oocysts and are attenuated in immunocompromised mice. These findings suggest that mutants lacking INS1, or related proteases, are useful for further characterizing the pathway that leads to macrogamont maturation and oocyst wall formation.

2020 ◽  
Author(s):  
Rui Xu ◽  
Yaoyu Feng ◽  
Lihua Xiao ◽  
L. David Sibley

AbstractThe apicomplexan parasite Cryptosporidium parvum contains an expanded family of 22 insulinase like proteases (INS), a feature that contrasts with their otherwise streamlined genome. Here we examined the function of INS1, which is most similar to the human insulinase protease that cleaves a variety of small peptide substrates. INS1 is a M16A clan member and contains a signal peptide, an N-terminal domain with the HxxEH active site, followed by three inactive domains. Unlike previously studied C. parvum INS proteins that are expressed in sporozoites and during merogony, INS1 was expressed exclusively in macrogamonts, where it was localized in small cytoplasmic vesicles. Although INS1 did not colocalize with the oocyst wall protein recognized by the antibody OW50, immune-electron microscopy indicated that INS1 resides in small vesicles in the secretory system. Notably, these small INS1 positive vesicles often subtend large vacuoles resembling wall forming bodies, which contain precursors for oocyst wall formation. Genetic deletion of INS1, or replacement with an active site mutant, resulted in lower formation of macrogamonts in vitro and reduced oocyst shedding in vivo. Our findings reveal that INS1 functions in formation or maturation of macrogamonts and that its loss results in attenuated virulence in immunocompromised mice.ImportanceCryptosporidiosis is a debilitating diarrheal disease in young children in developing countries. Absence of effective treatments or vaccines makes this infection very difficult to manage in susceptible populations. Although the oral dose of oocysts needed to cause infection is low, infected individuals shed very high numbers of oocysts, hence readily contaminating the environment. Our studies demonstrate that the protease INS1 is important for formation of female sexual stages and that in its absence, parasites produce fewer oocysts and are attenuated in immunocompromised mice. These findings suggest that mutants lacking INS1, or related proteases, may be useful for producing attenuated vaccines to induce immunity without causing disease.


2017 ◽  
Vol 85 (3) ◽  
Author(s):  
Maria A DeCicco RePass ◽  
Ying Chen ◽  
Yinan Lin ◽  
Wenda Zhou ◽  
David L. Kaplan ◽  
...  

ABSTRACT Cryptosporidium spp. are apicomplexan parasites of global importance that cause human diarrheal disease. In vitro culture models that may be used to study this parasite and that have physiological relevance to in vivo infection remain suboptimal. Thus, the pathogenesis of cryptosporidiosis remains poorly characterized, and interventions for the disease are limited. In this study, we evaluated the potential of a novel bioengineered three-dimensional (3D) human intestinal tissue model (which we developed previously) to support long-term infection by Cryptosporidium parvum. Infection was assessed by immunofluorescence assays and confocal and scanning electron microscopy and quantified by quantitative reverse transcription-PCR. We found that C. parvum infected and developed in this tissue model for at least 17 days, the extent of the study time used in the present study. Contents from infected scaffolds could be transferred to fresh scaffolds to establish new infections for at least three rounds. Asexual and sexual stages and the formation of new oocysts were observed during the course of infection. Additionally, we observed ablation, blunting, or distortion of microvilli in infected epithelial cells. Ultimately, a 3D model system capable of supporting continuous Cryptosporidium infection will be a useful tool for the study of host-parasite interactions, identification of putative drug targets, screening of potential interventions, and propagation of genetically modified parasites.


2020 ◽  
Vol 64 (6) ◽  
Author(s):  
Ørjan Samuelsen ◽  
Ove Alexander Høgmoen Åstrand ◽  
Christopher Fröhlich ◽  
Adam Heikal ◽  
Susann Skagseth ◽  
...  

ABSTRACT Carbapenem-resistant Gram-negative pathogens are a critical public health threat and there is an urgent need for new treatments. Carbapenemases (β-lactamases able to inactivate carbapenems) have been identified in both serine β-lactamase (SBL) and metallo-β-lactamase (MBL) families. The recent introduction of SBL carbapenemase inhibitors has provided alternative therapeutic options. Unfortunately, there are no approved inhibitors of MBL-mediated carbapenem-resistance and treatment options for infections caused by MBL-producing Gram-negatives are limited. Here, we present ZN148, a zinc-chelating MBL-inhibitor capable of restoring the bactericidal effect of meropenem and in vitro clinical susceptibility to carbapenems in >98% of a large international collection of MBL-producing clinical Enterobacterales strains (n = 234). Moreover, ZN148 was able to potentiate the effect of meropenem against NDM-1-producing Klebsiella pneumoniae in a murine neutropenic peritonitis model. ZN148 showed no inhibition of the human zinc-containing enzyme glyoxylase II at 500 μM, and no acute toxicity was observed in an in vivo mouse model with cumulative dosages up to 128 mg/kg. Biochemical analysis showed a time-dependent inhibition of MBLs by ZN148 and removal of zinc ions from the active site. Addition of exogenous zinc after ZN148 exposure only restored MBL activity by ∼30%, suggesting an irreversible mechanism of inhibition. Mass-spectrometry and molecular modeling indicated potential oxidation of the active site Cys221 residue. Overall, these results demonstrate the therapeutic potential of a ZN148-carbapenem combination against MBL-producing Gram-negative pathogens and that ZN148 is a highly promising MBL inhibitor that is capable of operating in a functional space not presently filled by any clinically approved compound.


2012 ◽  
Vol 19 (10) ◽  
pp. 1603-1608 ◽  
Author(s):  
Koushik Roy ◽  
David J. Hamilton ◽  
James M. Fleckenstein

ABSTRACTEnterotoxigenicEscherichia coli(ETEC) is an important cause of diarrheal disease in developing countries, where it is responsible for hundreds of thousands of deaths each year. Vaccine development for ETEC has been hindered by the heterogeneity of known molecular targets and the lack of broad-based sustained protection afforded by existing vaccine strategies. In an effort to explore the potential role of novel antigens in ETEC vaccines, we examined the ability of antibodies directed against the ETEC heat-labile toxin (LT) and the recently described EtpA adhesin to prevent intestinal colonizationin vivoand toxin delivery to epithelial cellsin vitro. We demonstrate that EtpA is required for the optimal delivery of LT and that antibodies against this adhesin play at least an additive role in preventing delivery of LT to target intestinal cells when combined with antibodies against either the A or B subunits of the toxin. Moreover, vaccination with a combination of LT and EtpA significantly impaired intestinal colonization. Together, these results suggest that the incorporation of recently identified molecules such as EtpA could be used to enhance current approaches to ETEC vaccine development.


2013 ◽  
Vol 81 (9) ◽  
pp. 3068-3076 ◽  
Author(s):  
Carolyn R. Morris ◽  
Christen L. Grassel ◽  
Julia C. Redman ◽  
Jason W. Sahl ◽  
Eileen M. Barry ◽  
...  

ABSTRACTShigellaspecies Gram-negative bacteria which cause a diarrheal disease, known as shigellosis, by invading and destroying the colonic mucosa and inducing a robust inflammatory response. With no vaccine available, shigellosis annually kills over 600,000 children in developing countries. This study demonstrates the utility of combining high-throughput bioinformatic methods within vitroandin vivoassays to provide new insights into pathogenesis. Comparisons ofin vivoandin vitrogene expression identified genes associated with intracellular growth. Additional bioinformatics analyses identified genes that are present inS. flexneriisolates but not in the three otherShigellaspecies. Comparison of these two analyses revealed nine genes that are differentially expressed during invasion and that are specific toS. flexneri. One gene, a DeoR family transcriptional regulator with decreased expression during invasion, was further characterized and is now designatedicgR, forintracellulargrowthregulator. Deletion oficgRcaused no difference in growthin vitrobut resulted in increased intracellular replication in HCT-8 cells. Furtherin vitroandin vivostudies using high-throughput sequencing of RNA transcripts (RNA-seq) of an isogenic ΔicgRmutant identified 34 genes that were upregulated under both growth conditions. This combined informatics and functional approach has allowed the characterization of a gene and pathway previously unknown inShigellapathogenesis and provides a framework for further identification of novel virulence factors and regulatory pathways.


2022 ◽  
Vol 12 ◽  
Author(s):  
Shahbaz M. Khan ◽  
Xuejin Zhang ◽  
William H. Witola

Cryptosporidium parvum is a highly prevalent protozoan parasite that causes a diarrheal disease in humans and animals worldwide. Thus far, the moderately effective nitazoxanide is the only drug approved by the United States Food and Drug Administration for treating cryptosporidiosis in immunocompetent humans. However, no effective drug exists for the severe disease seen in young children, immunocompromised individuals and neonatal livestock. C. parvum lacks the Krebs cycle and the oxidative phosphorylation steps, making it dependent solely on glycolysis for metabolic energy production. Within its glycolytic pathway, C. parvum possesses two unique enzymes, the bacterial-type lactate dehydrogenase (CpLDH) and the plant-like pyruvate kinase (CpPyK), that catalyze two sequential steps for generation of essential metabolic energy. We have previously reported that inhibitors of CpLDH are effective against C. parvum, both in vitro and in vivo. Herein, we developed an in vitro assay for the enzymatic activity of recombinant CpPyK protein and used it to screen a chemical compound library for inhibitors of CpPyK’s activity. The identified inhibitors were tested (at non-toxic concentrations) for efficacy against C. parvum using in vitro assays, and an in vivo mouse infection model. We identified six CpPyK inhibitors that blocked in vitro growth and proliferation of C. parvum at low micromolar concentrations (EC50 values ranging from 10.29 to 86.01 μM) that were non-toxic to host cells. Among those six compounds, two (NSC252172 and NSC234945) were found to be highly efficacious against cryptosporidiosis in immunocompromised mice at a dose of 10 mg/kg body weight, with very significant reduction in parasite load and amelioration of intestinal pathologies. Together, these findings have unveiled inhibitors for an essential molecular target in C. parvum and demonstrated their efficacy against the parasite in vitro and in vivo. These inhibitors are, therefore, potential lead-compounds for developing efficacious treatments for cryptosporidiosis.


2017 ◽  
Vol 61 (6) ◽  
Author(s):  
Wan Jung Kim ◽  
Keith A. Korthals ◽  
Suhua Li ◽  
Christine Le ◽  
Jarosław Kalisiak ◽  
...  

ABSTRACT Giardia lamblia is an important and ubiquitous cause of diarrheal disease. The primary agents in the treatment of giardiasis are nitroheterocyclic drugs, particularly the imidazoles metronidazole and tinidazole and the thiazole nitazoxanide. Although these drugs are generally effective, treatment failures occur in up to 20% of cases, and resistance has been demonstrated in vivo and in vitro. Prior work had suggested that side chain modifications of the imidazole core can lead to new effective 5-nitroimidazole drugs that can combat nitro drug resistance, but the full potential of nitroheterocycles other than imidazole to yield effective new antigiardial agents has not been explored. Here, we generated derivatives of two clinically utilized nitroheterocycles, nitrothiazole and nitrofuran, as well as a third heterocycle, nitropyrrole, which is related to nitroimidazole but has not been systematically investigated as an antimicrobial drug scaffold. Click chemistry was employed to synthesize 442 novel nitroheterocyclic compounds with extensive side chain modifications. Screening of this library against representative G. lamblia strains showed a wide spectrum of in vitro activities, with many of the compounds exhibiting superior activity relative to reference drugs and several showing >100-fold increase in potency and the ability to overcome existing forms of metronidazole resistance. The majority of new compounds displayed no cytotoxicity against human cells, and several compounds were orally active against murine giardiasis in vivo. These findings provide additional impetus for the systematic development of nitroheterocyclic compounds with nonimidazole cores as alternative and improved agents for the treatment of giardiasis and potentially other infectious agents.


2016 ◽  
Vol 61 (2) ◽  
Author(s):  
Sergio H. Szajnman ◽  
Tamila Galaka ◽  
Zhu-Hong Li ◽  
Catherine Li ◽  
Nathan M. Howell ◽  
...  

ABSTRACT We tested a series of sulfur-containing linear bisphosphonates against Toxoplasma gondii, the etiologic agent of toxoplasmosis. The most potent compound (compound 22; 1-[(n-decylsulfonyl)ethyl]-1,1-bisphosphonic acid) is a sulfone-containing compound, which had a 50% effective concentration (EC50) of 0.11 ± 0.02 μM against intracellular tachyzoites. The compound showed low toxicity when tested in tissue culture with a selectivity index of >2,000. Compound 22 also showed high activity in vivo in a toxoplasmosis mouse model. The compound inhibited the Toxoplasma farnesyl diphosphate synthase (TgFPPS), but the concentration needed to inhibit 50% of the enzymatic activity (IC50) was higher than the concentration that inhibited 50% of growth. We tested compound 22 against two other apicomplexan parasites, Plasmodium falciparum (EC50 of 0.6 ± 0.01 μM), the agent of malaria, and Cryptosporidium parvum (EC50 of ∼65 μM), the agent of cryptosporidiosis. Our results suggest that compound 22 is an excellent novel compound that could lead to the development of potent agents against apicomplexan parasites.


2020 ◽  
Vol 64 (9) ◽  
Author(s):  
M. Biagi ◽  
A. Vialichka ◽  
M. Jurkovic ◽  
T. Wu ◽  
A. Shajee ◽  
...  

ABSTRACT The production of an L1 metallo-β-lactamase and an L2 serine active-site β-lactamase precludes the use of β-lactams for the treatment of Stenotrophomonas maltophilia infections. Preclinical data suggest that cefiderocol is the first approved β-lactam with reliable activity against S. maltophilia, but data on strains resistant to current first-line agents are limited, and no studies have assessed cefiderocol-based combinations. The objective of this study was to evaluate and compare the in vitro activity of cefiderocol alone and in combination with levofloxacin, minocycline, polymyxin B, or trimethoprim-sulfamethoxazole (TMP-SMZ) against a collection of highly resistant clinical S. maltophilia isolates. For this purpose, the MICs of cefiderocol, ceftazidime, levofloxacin, minocycline, polymyxin B, and TMP-SMZ for 37 S. maltophilia isolates not susceptible to levofloxacin and/or TMP-SMZ were determined. Nine strains with various cefiderocol MICs were then tested in time-kill experiments with cefiderocol alone and in combination with comparators. The only agents for which susceptibility rates exceeded 40% were cefiderocol (100%) and minocycline (97.3%). Cefiderocol displayed the lowest MIC50 and MIC90 values (0.125 and 0.5 mg/liter, respectively). In time-kill experiments, synergy was observed when cefiderocol was combined with levofloxacin, minocycline, polymyxin B, or TMP-SMZ against 4/9 (44.4%), 6/9 (66.7%), 5/9 (55.5%), and 6/9 (66.7%) isolates, respectively. These data suggest that cefiderocol displays potent in vitro activity against S. maltophilia, including strains resistant to currently preferred agents. Future dynamic and in vivo studies of cefiderocol alone and in combination are warranted to further define cefiderocol’s synergistic capabilities and its place in therapy for S. maltophilia infections.


2015 ◽  
Vol 83 (6) ◽  
pp. 2475-2486 ◽  
Author(s):  
Vanessa Lagal ◽  
Márcia Dinis ◽  
Dominique Cannella ◽  
Daniel Bargieri ◽  
Virginie Gonzalez ◽  
...  

The apical membrane antigen 1 (AMA1) protein was believed to be essential for the perpetuation of two Apicomplexa parasite genera,PlasmodiumandToxoplasma, until we genetically engineered viable parasites lackingAMA1. The reduction in invasiveness of theToxoplasma gondiiRH-AMA1 knockout (RH-AMA1KO) tachyzoite population,in vitro, raised key questions about the outcome associated with these tachyzoites once inoculated in the peritoneal cavity of mice. In this study, we used AMNIS technology to simultaneously quantify and image the parasitic process driven by AMA1KOtachyzoites. We report their ability to colonize and multiply in mesothelial cells and in both resident and recruited leukocytes. While the RH-AMA1KOpopulation amplification is rapidly lethal in immunocompromised mice, it is controlled in immunocompetent hosts, where immune cells in combination sense parasites and secrete proinflammatory cytokines. This innate response further leads to a long-lasting status immunoprotective against a secondary challenge by high inocula of the homologous type I or a distinct type IIT. gondiigenotypes. While AMA1 is definitively not an essential protein for tachyzoite entry and multiplication in host cells, it clearly assists the expansion of parasite populationin vivo.


Sign in / Sign up

Export Citation Format

Share Document