scholarly journals Human UPF1 Participates in Small RNA-Induced mRNA Downregulation

2009 ◽  
Vol 29 (21) ◽  
pp. 5789-5799 ◽  
Author(s):  
Hua Jin ◽  
Mi Ra Suh ◽  
Jinju Han ◽  
Kyu-Hyeon Yeom ◽  
Yoontae Lee ◽  
...  

ABSTRACT MicroRNAs (miRNAs) are endogenous antisense regulators that trigger endonucleolytic mRNA cleavage, translational repression, and/or mRNA decay. miRNA-mediated gene regulation is important for numerous biological pathways, yet the underlying mechanisms are still under rigorous investigation. Here we identify human UPF1 (hUPF1) as a protein that contributes to RNA silencing. When hUPF1 is knocked down, miRNA targets are upregulated. The depletion of hUPF1 also increases the off-target messages of small interfering RNAs (siRNAs), which are imperfectly complementary to transfected siRNAs. Conversely, when overexpressed, wild-type hUPF1 downregulates miRNA targets. The helicase domain mutant of hUPF1 fails to suppress miRNA targets. hUPF1 interacts with human Argonaute 1 (hAGO1) and hAGO2 and colocalizes with hAGO1 and hAGO2 in processing bodies, which are known to be the sites for translational repression and mRNA destruction. We further find that the amounts of target messages bound to hAGO2 are reduced when hUPF1 is depleted. Our data thus suggest that hUPF1 may participate in RNA silencing by facilitating the binding of the RNA-induced silencing complex to the target and by accelerating the decay of the mRNA.

2015 ◽  
Vol 112 (18) ◽  
pp. 5850-5855 ◽  
Author(s):  
Yongli Qiao ◽  
Jinxia Shi ◽  
Yi Zhai ◽  
Yingnan Hou ◽  
Wenbo Ma

A broad range of parasites rely on the functions of effector proteins to subvert host immune response and facilitate disease development. The notorious Phytophthora pathogens evolved effectors with RNA silencing suppression activity to promote infection in plant hosts. Here we report that the Phytophthora Suppressor of RNA Silencing 1 (PSR1) can bind to an evolutionarily conserved nuclear protein containing the aspartate–glutamate–alanine–histidine-box RNA helicase domain in plants. This protein, designated PSR1-Interacting Protein 1 (PINP1), regulates the accumulation of both microRNAs and endogenous small interfering RNAs in Arabidopsis. A null mutation of PINP1 causes embryonic lethality, and silencing of PINP1 leads to developmental defects and hypersusceptibility to Phytophthora infection. These phenotypes are reminiscent of transgenic plants expressing PSR1, supporting PINP1 as a direct virulence target of PSR1. We further demonstrate that the localization of the Dicer-like 1 protein complex is impaired in the nucleus of PINP1-silenced or PSR1-expressing cells, indicating that PINP1 may facilitate small RNA processing by affecting the assembly of dicing complexes. A similar function of PINP1 homologous genes in development and immunity was also observed in Nicotiana benthamiana. These findings highlight PINP1 as a previously unidentified component of RNA silencing that regulates distinct classes of small RNAs in plants. Importantly, Phytophthora has evolved effectors to target PINP1 in order to promote infection.


2021 ◽  
Author(s):  
Anders Hafrén ◽  
Gesa Hoffmann ◽  
Amir Mahboubi ◽  
Johannes Hanson ◽  
Damien Garcia

Viral infections impose extraordinary RNA stress on a cell, triggering cellular RNA surveillance pathways like RNA decapping, nonsense-mediated decay and RNA silencing. Viruses need to maneuver between these pathways to establish infection and succeed in producing high amounts of viral proteins. Processing bodies (PBs) are integral to RNA triage in eukaryotic cells with several distinct RNA quality control pathways converging for selective RNA regulation. In this study, we investigate the role of Arabidopsis thaliana PBs during Cauliflower Mosaic Virus (CaMV) infection. We find that several PB components are co-opted into viral replication factories and support virus multiplication. This pro-viral role was not associated with RNA decay pathways but instead, we could establish PB components as essential helpers in viral RNA translation. While CaMV is normally resilient to RNA silencing, PB dysfunctions expose the virus to this pathway, similar to previous observations on transgenes. Transgenes, however, undergo RNA Quality Control dependent RNA degradation, whereas CaMV RNA remains stable but becomes translationally repressed through decreased ribosome association, revealing a unique dependence between PBs, RNA silencing and translational repression. Together, our study shows that PB components are co-opted by the virus to maintain efficient translation, a mechanism not associated with canonical PB functions.


2007 ◽  
Vol 20 (12) ◽  
pp. 1489-1494 ◽  
Author(s):  
S. A. Siddiqui ◽  
C. Sarmiento ◽  
S. Valkonen ◽  
E. Truve ◽  
K. Lehto

Full-length cDNAs of the wild-type (wt) Tobacco mosaic virus (TMV) and of the coat protein gene-deleted (ΔCP) derivative of wt-TMV, under control of the 35S promoter and downstream ribozyme sequence to produce accurate viral transcripts, were transformed to tobacco plants to analyze plant–virus interactions through different stages of plant development. Surprisingly, young wt-TMV transgenics accumulated only very low levels of viral RNA, remained free of symptoms, and were moderately resistant against exogenous inoculations. This early resistance caused significant stress to the plants, as indicated by reduced growth. Approximately 7 to 8 weeks after germination, the resistance was broken and plants developed typical wt-TMV symptoms, with high accumulation of the viral RNAs and proteins. The ΔCP-TMV plants likewise were initially resistant to the endogenous inoculum and were stunted, although to a lesser extent than the wt-TMV plants. The resistance was broken at the same time as in the wt-TMV plants, but the mutant replicated to much lower levels and produced much milder symptoms than the wt virus. TMV-specific small interfering RNAs as well as increased transgene methylation were detected in the plants only after the resistance break, indicating that the resistance in the young plants was not due to RNA silencing.


2017 ◽  
Author(s):  
Filipe Borges ◽  
Jean-Sébastien Parent ◽  
Frédéric van Ex ◽  
Philip Wolff ◽  
German Martínez ◽  
...  

Chromosome dosage plays a significant role in reproductive isolation and speciation in both plants and animals, but underlying mechanisms are largely obscure1. Transposable elements can promote hybridity through maternal small RNA2, and have been postulated to regulate dosage response via neighboring imprinted genes3,4. Here, we show that a highly conserved microRNA in plants, miR845, targets the tRNAMet primer-binding site (PBS) of LTR-retrotransposons in Arabidopsis pollen, and triggers the accumulation of 21 to 22-nucleotide small RNA in a dose dependent fashion via RNA polymerase IV. We show that these epigenetically activated small-interfering RNAs (easiRNAs) mediate hybridization barriers between diploid seed parents and tetraploid pollen parents (“the triploid block”), and that natural variation for miR845 may account for “endosperm balance” allowing formation of triploid seeds. Targeting the PBS with small RNA is a common mechanism for transposon control in mammals and plants, and provides a uniquely sensitive means to monitor chromosome dosage and imprinting in the developing seed.


Author(s):  
Pauline Mochama ◽  
Prajakta Jadhav ◽  
Achal Neupane ◽  
Shin-Yi Lee Marzano

This study aimed to demonstrate the existence of antiviral RNA silencing mechanisms in Sclerotinia sclerotiorum by probing wild-type and RNA-silencing-deficient strains of the fungus with an RNA virus and a circular DNA virus. Key silencing-related genes, specifically dicers, were disrupted in order to dissect the RNA silencing pathway and provide useful information on fungal control. Dicers Dcl-1, Dcl-2, and both Dcl-1/Dcl-2- genes were displaced by selective marker(s). Disruption mutants were then compared for changes in phenotype, virulence, susceptibility to viral infection, and small RNA accumulation compared to the wild-type strain. Disruption of Dcl-1 or Dcl-2 resulted in no changes in phenotype compared to wild-type S. sclerotiorum; however, the double dicer mutant strain exhibited slower growth. To examine the effect of viral infection on strains containing null-mutations of Dcl-1, Dcl-2 or both genes, mutants were transfected with full-length RNA transcripts of a hypovirus SsHV2L and copies of a single-stranded DNA mycovirus- SsHADV-1 as a synthetic virus. Results indicate that the ΔDcl-1/Dcl-2 double mutant which was slow growing without virus infection exhibited much more severe debilitation following virus infection. Altered colony morphology including: reduced pigmentation, significantly slower growth, and delayed sclerotial formation. Additionally, there is an absence of virus-derived small RNAs in the virus-infected ∆Dcl-1/Dcl-2 mutant compared to the virus-infected wild-type strain which displays a high percentage of virus-derived small RNA. The findings of these studies suggest that if both dicers are silenced, invasive nucleic acids which include mycoviruses ubiquitous in nature- can greatly debilitate the virulence of fungal plant pathogens.


2019 ◽  
Vol 116 (13) ◽  
pp. 6451-6456 ◽  
Author(s):  
Geng-Jen Jang ◽  
Jun-Yi Yang ◽  
Hsu-Liang Hsieh ◽  
Shu-Hsing Wu

Germinated plant seeds buried in soil undergo skotomorphogenic development before emergence to reach the light environment. Young seedlings transitioning from dark to light undergo photomorphogenic development. During photomorphogenesis, light alters the transcriptome and enhances the translation of thousands of mRNAs during the dark-to-light transition inArabidopsisyoung seedlings. About 1,500 of these mRNAs have comparable abundance before and after light treatment, which implies widespread translational repression in dark-grown seedlings. Processing bodies (p-bodies), the cytoplasmic granules found in diverse organisms, can balance the storage, degradation, and translation of mRNAs. However, the function of p-bodies in translation control remains largely unknown in plants. Here we found that anArabidopsismutant defective in p-body formation (Decapping 5;dcp5-1) showed reduced fitness under both dark and light conditions. Comparative transcriptome and translatome analyses of wild-type anddcp5-1seedlings revealed that p-bodies can attenuate the premature translation of specific mRNAs in the dark, including those encoding enzymes for protochlorophyllide synthesis and PIN-LIKES3 for auxin-dependent apical hook opening. When the seedlings protrude from soil, light perception by photoreceptors triggers a reduced accumulation of p-bodies to release the translationally stalled mRNAs for active translation of mRNAs encoding proteins needed for photomorphogenesis. Our data support a key role for p-bodies in translation repression, an essential mechanism for proper skotomorphogenesis and timely photomorphogenesis in seedlings.


2021 ◽  
pp. 002203452110119
Author(s):  
L. Fan ◽  
Y.J. Ou ◽  
Y.X. Zhu ◽  
Y.D. Liang ◽  
Y. Zhou ◽  
...  

Leukemia inhibitory factor (LIF), a member of the interleukin 6 family of cytokines, is involved in skeletal metabolism, blastocyst implantation, and stem cell pluripotency maintenance. However, the role of LIF in tooth development needs to be elucidated. The aim of the present study was to investigate the effect of Lif deficiency on tooth development and to elucidate the functions of Lif during tooth development and the underlying mechanisms. First, it was found that the incisors of Lif-knockout mice had a much whiter color than those of wild-type mice. Although there were no structural abnormalities or defective mineralization according to scanning electronic microscopy and computed tomography analysis, 3-dimensional images showed that the length of incisors was shorter in Lif−/− mice. Microhardness and acid resistance assays showed that the hardness and acid resistance of the enamel surface of Lif−/− mice were decreased compared to those of wild-type mice. In Lif−/− mice, whose general iron status was comparable to that of the control mice, the iron content of the incisors was significantly reduced, as confirmed by energy-dispersive X-ray spectroscopy (EDS) and Prussian blue staining. Histological staining showed that the cell length of maturation-stage ameloblasts was shorter in Lif−/− mice. Likewise, decreased expression of Tfrc and Slc40a1, both of which are crucial proteins for iron transportation, was observed in Lif−/− mice and Lif-knockdown ameloblast lineage cell lines, according to quantitative reverse transcription polymerase chain reaction, immunohistochemistry, and Western blot. Moreover, the upregulation of Tfrc and Slc40a1 induced by Lif stimulation was blocked by Stattic, a signal transducer and activator of transcription 3 (Stat3) signaling inhibitor. These results suggest that Lif deficiency inhibits iron transportation in the maturation-stage ameloblasts, and Lif modulates expression of Tfrc and Slc40a1 through the Stat3 signaling pathway during enamel development.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Ryotaro Maeda ◽  
Daisuke Kami ◽  
Akira Shikuma ◽  
Yosuke Suzuki ◽  
Toshihiko Taya ◽  
...  

AbstractThe RNA decay pathway plays key regulatory roles in cell identities and differentiation processes. Although adipogenesis is transcriptionally and epigenetically regulated and has been thoroughly investigated, how RNA metabolism that contributes to the stability of phenotype-shaping transcriptomes participates in differentiation remains elusive. In this study, we investigated Ddx6, an essential component of processing bodies (PBs) that executes RNA decay and translational repression in the cytoplasm and participates in the cellular transition of reprogramming. Upon adipogenic induction, Ddx6 dynamically accumulated to form PBs with a binding partner, 4E-T, at the early phase prior to emergence of intracellular lipid droplets. In contrast, preadipocytes with Ddx6 knockout (KO) or 4E-T knockdown (KD) failed to generate PBs, resulting in significant suppression of adipogenesis. Transcription factors related to preadipocytes and negative regulators of adipogenesis that were not expressed under adipogenic stimulation were maintained in Ddx6-KO and 4E-T-KD preadipocytes under adipogenic induction. Elimination of Dlk1, a major negative regulator of adipogenesis, in 3T3L1 Ddx6-KO cells did not restore adipogenic differentiation capacity to any extent. Similar to murine cells, human primary mesenchymal stem cells, which can differentiate into adipocytes upon stimulation with adipogenic cocktails, required DDX6 to maturate into adipocytes. Therefore, RNA decay of the entire parental transcriptome, rather than removal of a strong negative regulator, could be indispensable for adipogenesis.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 267
Author(s):  
Axel J. Giudicatti ◽  
Ariel H. Tomassi ◽  
Pablo A. Manavella ◽  
Agustin L. Arce

MicroRNAs are small regulatory RNAs involved in several processes in plants ranging from development and stress responses to defense against pathogens. In order to accomplish their molecular functions, miRNAs are methylated and loaded into one ARGONAUTE (AGO) protein, commonly known as AGO1, to stabilize and protect the molecule and to assemble a functional RNA-induced silencing complex (RISC). A specific machinery controls miRNA turnover to ensure the silencing release of targeted-genes in given circumstances. The trimming and tailing of miRNAs are fundamental modifications related to their turnover and, hence, to their action. In order to gain a better understanding of these modifications, we analyzed Arabidopsis thaliana small RNA sequencing data from a diversity of mutants, related to miRNA biogenesis, action, and turnover, and from different cellular fractions and immunoprecipitations. Besides confirming the effects of known players in these pathways, we found increased trimming and tailing in miRNA biogenesis mutants. More importantly, our analysis allowed us to reveal the importance of ARGONAUTE 1 (AGO1) loading, slicing activity, and cellular localization in trimming and tailing of miRNAs.


Sign in / Sign up

Export Citation Format

Share Document