scholarly journals Displacement of Histones at Promoters of Saccharomyces cerevisiae Heat Shock Genes Is Differentially Associated with Histone H3 Acetylation

2006 ◽  
Vol 26 (20) ◽  
pp. 7587-7600 ◽  
Author(s):  
T. Y. Erkina ◽  
A. M. Erkine

ABSTRACT Chromatin remodeling at promoters of activated genes spans from mild histone modifications to outright displacement of nucleosomes in trans. Factors affecting these events are not always clear. Our results indicate that histone H3 acetylation associated with histone displacement differs drastically even between promoters of such closely related heat shock genes as HSP12, SSA4, and HSP82. The HSP12 promoter, with the highest level of histone displacement, showed the highest level of H3 acetylation, while the SSA4 promoter, with a lower histone displacement, showed only modest H3 acetylation. Moreover, for the HSP12 promoter, the level of acetylated H3 is temporarily increased prior to nucleosome departure. Individual promoters in strains expressing truncated versions of heat shock factor (HSF) showed that deletion of either one of two activating regions in HSF led to the diminished histone displacement and correspondingly lower H3 acetylation. The deletion of both regions simultaneously severely decreased histone displacement for all promoters tested, showing the dependence of these processes on HSF. The level of histone H3 acetylation at individual promoters in strains expressing truncated HSF also correlated with the extent of histone displacement. The beginning of chromatin remodeling coincides with the polymerase II loading on heat shock gene promoters and is regulated either by HSF binding or activation of preloaded HSF.

1989 ◽  
Vol 9 (9) ◽  
pp. 3911-3918 ◽  
Author(s):  
E D von Gromoff ◽  
U Treier ◽  
C F Beck

Genomic clones representing three Chlamydomonas reinhardtii genes homologous to the Drosophila hsp70 heat shock gene were isolated. The mRNAs of genes hsp68, hsp70, and hsp80 could be translated in vitro into proteins of Mr 68,000, 70,000, and 80,000, respectively. Transcription of these genes increased dramatically upon heat shock, and the corresponding mRNAs rapidly accumulated, reaching a peak at around 30 min after a shift to the elevated temperature. Light also induced the accumulation of the mRNAs encoded by these heat shock genes. A shift of dark-grown cells to light resulted in a drastic increase in mRNA levels, which reached a maximum at around 1 h after the shift. Thus, in Chlamydomonas, expression of hsp70-homologous heat shock genes appears to be regulated by thermal stress and light.


1989 ◽  
Vol 9 (9) ◽  
pp. 3911-3918
Author(s):  
E D von Gromoff ◽  
U Treier ◽  
C F Beck

Genomic clones representing three Chlamydomonas reinhardtii genes homologous to the Drosophila hsp70 heat shock gene were isolated. The mRNAs of genes hsp68, hsp70, and hsp80 could be translated in vitro into proteins of Mr 68,000, 70,000, and 80,000, respectively. Transcription of these genes increased dramatically upon heat shock, and the corresponding mRNAs rapidly accumulated, reaching a peak at around 30 min after a shift to the elevated temperature. Light also induced the accumulation of the mRNAs encoded by these heat shock genes. A shift of dark-grown cells to light resulted in a drastic increase in mRNA levels, which reached a maximum at around 1 h after the shift. Thus, in Chlamydomonas, expression of hsp70-homologous heat shock genes appears to be regulated by thermal stress and light.


2008 ◽  
Vol 28 (23) ◽  
pp. 6967-6972 ◽  
Author(s):  
Jennifer K. Choi ◽  
Daniel E. Grimes ◽  
Keegan M. Rowe ◽  
LeAnn J. Howe

ABSTRACT Rsc4p, a subunit of the RSC chromatin-remodeling complex, is acetylated at lysine 25 by Gcn5p, a well-characterized histone acetyltransferase (HAT). Mutation of lysine 25 does not result in a significant growth defect, and therefore whether this modification is important for the function of the essential RSC complex was unknown. In a search to uncover the molecular basis for the lethality resulting from loss of multiple histone H3-specific HATs, we determined that loss of Rsc4p acetylation is lethal in strains lacking histone H3 acetylation. Phenotype comparison of mutants with arginine and glutamine substitutions of acetylatable lysines within the histone H3 tail suggests that it is a failure to neutralize the charge of the H3 tail that is lethal in strains lacking Rsc4p acetylation. We also demonstrate that Rsc4p acetylation does not require any of the known Gcn5p-dependent HAT complexes and thus represents a truly novel function for Gcn5p. These results demonstrate for the first time the vital and yet redundant functions of histone H3 and Rsc4p acetylation in maintaining cell viability.


Cornea ◽  
2018 ◽  
Vol 37 (5) ◽  
pp. 624-632 ◽  
Author(s):  
Karina E. Herencia-Bueno ◽  
Marcela Aldrovani ◽  
Roberta M. Crivelaro ◽  
Roberto Thiesen ◽  
Alexandre A. F. Barros-Sobrinho ◽  
...  

2021 ◽  
Vol 22 (10) ◽  
pp. 5392
Author(s):  
Ji-Yeong Lee ◽  
Hanna Kim ◽  
Areum Jo ◽  
Rin Khang ◽  
Chi-Hu Park ◽  
...  

α-Synuclein (α-syn) is a hallmark amyloidogenic protein component of Lewy bodies in dopaminergic neurons affected by Parkinson’s disease (PD). Despite the multi-faceted gene regulation of α-syn in the nucleus, the mechanism underlying α-syn crosstalk in chromatin remodeling in PD pathogenesis remains elusive. Here, we identified transcriptional adapter 2-alpha (TADA2a) as a novel binding partner of α-syn using the BioID system. TADA2a is a component of the p300/CBP-associated factor and is related to histone H3/H4 acetylation. We found that α-syn A53T was more preferentially localized in the nucleus than the α-syn wild-type (WT), leading to a stronger disturbance of TADA2a. Indeed, α-syn A53T significantly reduced the level of histone H3 acetylation in SH-SY5Y cells; its reduction was also evident in the striatum (STR) and substantia nigra (SN) of mice that were stereotaxically injected with α-syn preformed fibrils (PFFs). Interestingly, α-syn PFF injection resulted in a decrease in TADA2a in the STR and SN of α-syn PFF-injected mice. Furthermore, the levels of TADA2a and acetylated histone H3 were significantly decreased in the SN of patients with PD. Therefore, histone modification through α-syn A53T-TADA2a interaction may be associated with α-syn-mediated neurotoxicity in PD pathology.


1985 ◽  
Vol 82 (9) ◽  
pp. 2679-2683 ◽  
Author(s):  
D. W. Cowing ◽  
J. C. Bardwell ◽  
E. A. Craig ◽  
C. Woolford ◽  
R. W. Hendrix ◽  
...  

2003 ◽  
Vol 185 (2) ◽  
pp. 466-474 ◽  
Author(s):  
Saskia Versteeg ◽  
Angelika Escher ◽  
Andy Wende ◽  
Thomas Wiegert ◽  
Wolfgang Schumann

ABSTRACT The heat shock genes of Bacillus subtilis are assigned to four classes on the basis of their regulation mechanisms. While classes I and III are negatively controlled by two different transcriptional repressors, class II is regulated by the alternative sigma factor σB. All heat shock genes with unidentified regulatory mechanisms, among them htpG, constitute class IV. Here, we show that expression of htpG is under positive control. We identified a DNA sequence (GAAAAGG) located downstream of the σA-dependent promoter of htpG. The heat inducibility of the promoter could be destroyed by inversion, nucleotide replacements, or removal of this DNA sequence. Fusion of this sequence to the vegetative lepA promoter conferred heat inducibility. Furthermore, we were able to show that the heat induction factor is dependent on the absolute temperature rather than the temperature increment and that nonnative proteins within the cytoplasm fail to induce htpG.


Sign in / Sign up

Export Citation Format

Share Document