scholarly journals HP1 Binding to Chromatin Methylated at H3K9 Is Enhanced by Auxiliary Factors

2006 ◽  
Vol 27 (2) ◽  
pp. 453-465 ◽  
Author(s):  
Ragnhild Eskeland ◽  
Anton Eberharter ◽  
Axel Imhof

ABSTRACT A large portion of the eukaryotic genome is packaged into transcriptionally silent heterochromatin. Several factors that play important roles during the establishment and maintenance of this condensed form have been identified. Methylation of lysine 9 within histone H3 and the subsequent binding of the chromodomain protein heterochromatin protein 1 (HP1) are thought to initiate heterochromatin formation in vivo and to propagate a heterochromatic state lasting through several cell divisions. For the present study we analyzed the binding of HP1 to methylated chromatin in a fully reconstituted system. In contrast to its strong binding to methylated peptides, HP1 binds only weakly to methylated chromatin. However, the addition of recombinant SU(VAR) protein, such as ACF1 or SU(VAR)3-9, facilitates HP1 binding to chromatin methylated at lysine 9 within the H3 N terminus (H3K9). We propose that HP1 has multiple target sites that contribute to its recognition of chromatin, only one of them being methylated at H3K9. These findings have implications for the mechanisms of recognition of specific chromatin modifications in vivo.

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1460
Author(s):  
Raquel Sales-Gil ◽  
Paola Vagnarelli

Heterochromatin Protein 1 (HP1) is a highly conserved protein that has been used as a classic marker for heterochromatin. HP1 binds to di- and tri-methylated histone H3K9 and regulates heterochromatin formation, functions and structure. Besides the well-established phosphorylation of histone H3 Ser10 that has been shown to modulate HP1 binding to chromatin, several studies have recently highlighted the importance of HP1 post-translational modifications and additional epigenetic features for the modulation of HP1-chromatin binding ability and heterochromatin formation. In this review, we summarize the recent literature of HP1 post-translational modifications that have contributed to understand how heterochromatin is formed, regulated and maintained.


2003 ◽  
Vol 161 (4) ◽  
pp. 707-714 ◽  
Author(s):  
Lucia Piacentini ◽  
Laura Fanti ◽  
Maria Berloco ◽  
Barbara Perrini ◽  
Sergio Pimpinelli

Heterochromatin protein 1 (HP1) is a conserved nonhistone chromosomal protein, which is involved in heterochromatin formation and gene silencing in many organisms. In addition, it has been shown that HP1 is also involved in telomere capping in Drosophila. Here, we show a novel striking feature of this protein demonstrating its involvement in the activation of several euchromatic genes in Drosophila. By immunostaining experiments using an HP1 antibody, we found that HP1 is associated with developmental and heat shock–induced puffs on polytene chromosomes. Because the puffs are the cytological phenotype of intense gene activity, we did a detailed analysis of the heat shock–induced expression of the HSP70 encoding gene in larvae with different doses of HP1 and found that HP1 is positively involved in Hsp70 gene activity. These data significantly broaden the current views of the roles of HP1 in vivo by demonstrating that this protein has multifunctional roles.


Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 769
Author(s):  
Yuko Takayama

Centromeres function as a platform for the assembly of multiple kinetochore proteins and are essential for chromosome segregation. An active centromere is characterized by the presence of a centromere-specific histone H3 variant, CENP-A. Faithful centromeric localization of CENP-A is supported by heterochromatin in almost all eukaryotes; however, heterochromatin proteins have been lost in most Saccharomycotina. Here, identification of CENP-A (CENP-AL.s.) and heterochromatin protein 1 (Lsw1) in a Saccharomycotina species, the oleaginous yeast Lipomyces starkeyi, is reported. To determine if these proteins are functional, the proteins in S. pombe, a species widely used to study centromeres, were ectopically expressed. CENP-AL.s. localizes to centromeres and can be replaced with S. pombe CENP-A, indicating that CENP-AL.s. is a functional centromere-specific protein. Lsw1 binds at heterochromatin regions, and chromatin binding is dependent on methylation of histone H3 at lysine 9. In other species, self-interaction of heterochromatin protein 1 is thought to cause folding of chromatin, triggering transcription repression and heterochromatin formation. Consistent with this, it was found that Lsw1 can self-interact. L. starkeyi chromatin contains the methylation of histone H3 at lysine 9. These results indicated that L. starkeyi has a primitive heterochromatin structure and is an attractive model for analysis of centromere heterochromatin evolution.


2004 ◽  
Vol 165 (6) ◽  
pp. 759-765 ◽  
Author(s):  
Creighton T. Tuzon ◽  
Britta Borgstrom ◽  
Dietmar Weilguny ◽  
Richard Egel ◽  
Julia Promisel Cooper ◽  
...  

Telomeres share the ability to silence nearby transcription with heterochromatin, but the requirement of heterochromatin proteins for most telomere functions is unknown. The fission yeast Rik1 protein is required for heterochromatin formation at centromeres and the mating-type locus, as it recruits the Clr4 histone methyltransferase, whose modification of histone H3 triggers binding by Swi6, a conserved protein involved in spreading of heterochromatin. Here, we demonstrate that Rik1 and Clr4, but not Swi6, are required along with the telomere protein Taz1 for crucial chromosome movements during meiosis. However, Rik1 is dispensable for the protective roles of telomeres in preventing chromosome end-fusion. Thus, a Swi6-independent heterochromatin function distinct from that at centromeres and the mating-type locus operates at telomeres during sexual differentiation.


2006 ◽  
Author(s):  
Δήμητρα Μακατσώρη

Αρχικός έλεγχος φυσιολογικών και νεοπλασματικών κυττάρων ανθρώπου και ποντικού χρησιμοποιώντας ειδικούς ανιχνευτές για την HPΙα και ΗΡΙβ έδειξε ότι η έκφραση των πρωτεϊνών αυτών δεν διαφέρει σημαντικά. Παράλληλα, μελέτη φυσιολογικών ιστών και πρωτογενών καλλιεργειών που έγινε στο εργαστήριό μας έδειξε σύνθετα πρότυπα υποπυρηνικής κατανομής που δεν θα μπορούσαν εύκολα να αποδοθούν σε αυξομειώσεις της ενδοκυττάριας συγκέντρωσης των ΗΡΙα/β, αλλά θα ήταν πιο συμβατά με έναν μηχανισμό ρύθμισης που εξαρτάται από αυξητικούς παράγοντες και μιτογόνα. Επί τη βάσει αυτών των δεδομένων επικεντρώσαμε τη μελέτη μας στις αλληλεπιδράσεις της πρωτεΐνης ΗΡ1 (Heterochromatin Protein 1) με διαφορετικά χρωματινικά υποστρώματα υπό in vitro και in vivo συνθήκες. Η άποψη που ισχύει ως τώρα είναι ότι η ΗΡ1 εντοπίζεται σε μεταγραφικά ανενεργή, συστατική (constitutive) ετεροχρωματίνη συνδεόμενη ειδικά με την ιστόνη Η3 που είναι μετα-μεταφραστικά τροποποιημένη (τριμεθυλιωμένη) στη λυσίνη 9 (me3K9-H3). Το παραπάνω πρότυπο, παρά την κομψότητα και την απλότητά του δεν επαρκεί όμως για να ερμηνεύσει το ευρύ φάσμα των αλληλεπιδράσεων της ΗΡ1 με την ετεροχρωματίνη πουπαρατηρούνται in vivo. Για αυτόν τον λόγο, μελετήσαμε τις αλληλεπιδράσεις ΗΡ1- χρωματίνης σε διαφορετικά επίπεδα πολυπλοκότητας και διερευνήσαμε κατά πόσον η me3K9-H3 αποτελεί τη μοναδική θέση πρόσδεσης της ΗΡ1. In vitro μελέτες έδειξαν ότι η ΗΡ1 προσδένεται επιλεκτικά σε μη τροποποιημένη ή μερικώς πρωτεολυμένη ιστόνη Η3, αλληλεπιδρώντας κυρίως με το κεντρικό τμήμα της (histone fold). Επίσης δείξαμε ότι η ΗΡ1 συνδέεται πιο ισχυρά στα διασπασμένα νουκλεοσώματα (Η3/Η4 υποσωματίδια) από ότι στα ακέραια σωματίδια. Τα αποτελέσματα της ανοσοαποτύπωσης κατά western και της φασματοσκοπίας μάζας έδειξαν ότι τα σωματίδια που επιλέγει η ΗΡ1 διαθέτουν ένα πολύπλοκο μοτίβο μετα-μεταφραστικών τροποποιήσεων, δεν είναι ιδιαίτερα εμπλουτισμένασε me3K9-H3 και δεν ακολουθούν το σύνολο των κανόνων που υπαγορεύονται από τον ιστονικό κώδικα. Αυτές οι βιοχημικές μελέτες συνηγορούν στην ιδέα ότι οι πρωτεΐνες ΗΡ1 αλληλεπιδρούν μετα διαφορετικά χρωματινικά υποστρώματα με τρόπο που εξαρτάται από τη φυσική κατάσταση της χρωματίνης. Είναι επίσης φανερό ότι οι in vitro παρατηρήσεις μας σχετίζονται με μία τουλάχιστον «χρωματινική κατάσταση» που απαντάται in vivo. Για παράδειγμα, παρατηρήσαμε ότι, η HP1 και η me3K9-H3 δεν συνεντοπίζονται απόλυτα και παρουσιάζουν διακριτά πρότυπα. In vivo πειράματα έδειξαν επίσης ότι η σταθερή ενσωμάτωση της ΗΡ1 στις ετεροχρωματινικές εστίες εξαρτάται από την S φάση. Τα αποτελέσματα αυτά αμφισβητούν το δόγμα ότι η μεθυλίωση στη λυσίνη 9 της ιστόνης Η3 αποτελεί τη μοναδική θέση πρόσδεσης (creates a binding site...) για την ΗΡ1 καιυποστηρίζουν ένα μηχανισμό ενσωμάτωσης που βασίζεται στην αντιγραφή. Ένα άλλο τμήμα της μελέτης μας επικεντρώθηκε στις αλληλεπιδράσεις του πυρηνικού φακέλου με την ετεροχρωματίνη. Ένα βασικό συστατικό του πυρηνικού φακέλου είναι ο LBR (Lamin Β Receptor), μία πολυτοπική πρωτεΐνη της εσωτερικής πυρηνικής μεμβράνης που συμμετέχει στην αγκυροβόληση της χρωματίνης στην περιφέρεια. Δύο βασικοί παράμετροι στις αλληλεπιδράσεις LBR-χρωματίνης είναι η φυσική κατάσταση του LBR και τα μοριακά χαρακτηριστικά της χρωματίνης με την οποία συνδέεται. Για να προσεγγίσουμε τα ερωτήματα αυτά, απομονώσαμε τμήματα περιφερικής ετεροχρωματίνης που είναι προσκολλημένα στην εσωτερική πυρηνική μεμβράνη. Δείξαμε ότι το αμινοτελικό τμήμα του LBR συνδέεται άμεσα με μονονουκλεοσώματα. Ανάλυση των νουκλεοσωματικών σωματιδίων που αλληλεπιδρούν με τον LBR με φασματοσκοπία μάζας απεκάλυψε πολύπλοκα πρότυπα μεθυλιωμένων/ακετυλιωμένων ιστονών που δεν περιέχουν ευχρωματινικές επιγενετικές τροποποιήσεις. Επίσης, μερικοί από τους συνδυασμούς που ανιχνεύθηκαν δεν ήταν συμβατοί με τους κανόνες του «ιστονικού κώδικα». Πολλές από τις διαμεμβρανικές πρωτεΐνες του πυρηνικού φακέλου οργανώνονται σε πολυπρωτεϊνικά σύμπλοκα και σχηματίζουν πλατφόρμες αναδιαμόρφωσης χρωματίνης. Πειράματα in vitro έδειξαν ότι ο LBR αλληλεπιδρά με τον εαυτό του μέσω του αμινοτελικού τμήματος και σχηματίζει ολιγομερή στο επίπεδο του πυρηνικού φακέλου. Επίσης, χρησιμοποιώντας μία ποικιλία μορφολογικών τεχνικών, δείξαμε ότι ο ενδογενής LBRεντοπίζεται σε διακριτές νησίδες στον πυρηνικό φάκελο. Τέλος, μορφολογική ανάλυση τωνετερόζυγων μεταλλάξεων του LBR στα ποντίκια έδειξε ότι η φυσιολογική κατανομή καθώς και η οργάνωση των νησίδων που σχηματίζει ο LBR στον φάκελο διαταράσσεται σημαντικά προκαλώντας μία ποικιλία δομικών και πυρηνικών αλλοιώσεων


Biomarkers ◽  
2016 ◽  
Vol 22 (5) ◽  
pp. 420-428 ◽  
Author(s):  
Yanhong Zhao ◽  
Ning Cheng ◽  
Min Dai ◽  
Hongquan Pu ◽  
Tongzhang Zheng ◽  
...  

2007 ◽  
Vol 18 (4) ◽  
pp. 1464-1471 ◽  
Author(s):  
Julio Mateos-Langerak ◽  
Maartje C. Brink ◽  
Martijn S. Luijsterburg ◽  
Ineke van der Kraan ◽  
Roel van Driel ◽  
...  

The heterochromatin protein 1 (HP1) family is thought to be an important structural component of heterochromatin. HP1 proteins bind via their chromodomain to nucleosomes methylated at lysine 9 of histone H3 (H3K9me). To investigate the role of HP1 in maintaining heterochromatin structure, we used a dominant negative approach by expressing truncated HP1α or HP1β proteins lacking a functional chromodomain. Expression of these truncated HP1 proteins individually or in combination resulted in a strong reduction of the accumulation of HP1α, HP1β, and HP1γ in pericentromeric heterochromatin domains in mouse 3T3 fibroblasts. The expression levels of HP1 did not change. The apparent displacement of HP1α, HP1β, and HP1γ from pericentromeric heterochromatin did not result in visible changes in the structure of pericentromeric heterochromatin domains, as visualized by DAPI staining and immunofluorescent labeling of H3K9me. Our results show that the accumulation of HP1α, HP1β, and HP1γ at pericentromeric heterochromatin domains is not required to maintain DAPI-stained pericentromeric heterochromatin domains and the methylated state of histone H3 at lysine 9 in such heterochromatin domains.


2008 ◽  
Vol 28 (19) ◽  
pp. 6044-6055 ◽  
Author(s):  
Shinji Honda ◽  
Eric U. Selker

ABSTRACT DNA methylation is involved in gene silencing and genomic stability in mammals, plants, and fungi. Genetics studies of Neurospora crassa have revealed that a DNA methyltransferase (DIM-2), a histone H3K9 methyltransferase (DIM-5), and heterochromatin protein 1 (HP1) are required for DNA methylation. We explored the interrelationships of these components of the methylation machinery. A yeast two-hybrid screen revealed that HP1 interacts with DIM-2. We confirmed the interaction in vivo and demonstrated that it involves a pair of PXVXL-related motifs in the N-terminal region of DIM-2 and the chromo shadow domain of HP1. Both regions are essential for proper DNA methylation. We also determined that DIM-2 and HP1 form a stable complex independently of the trimethylation of histone H3K9, although the association of DIM-2 with its substrate sequences depends on trimethyl-H3K9. The DIM-2/HP1 complex does not include DIM-5. We conclude that DNA methylation in Neurospora is largely or exclusively the result of a unidirectional pathway in which DIM-5 methylates histone H3K9 and then the DIM-2/HP1 complex recognizes the resulting trimethyl-H3K9 mark via the chromo domain of HP1.


Author(s):  
Yang Liu ◽  
Chunhui Wang ◽  
Handong Su ◽  
James A Birchler ◽  
Fangpu Han

Abstract In human cells, Haspin-mediated histone H3 threonine 3 (H3T3) phosphorylation promotes centromeric localization of the chromosomal passenger complex, thereby ensuring proper kinetochore–microtubule attachment. Haspin also binds to PDS5 cohesin-associated factor B (Pds5B), antagonizing the Wings apart-like protein homolog (Wapl)–Pds5B interaction and thus preventing Wapl from releasing centromeric cohesion during mitosis. However, the role of Haspin in plant chromosome segregation is not well understood. Here, we show that in maize (Zea mays) mitotic cells, ZmHaspin localized to the centromere during metaphase and anaphase, whereas it localized to the telomeres during meiosis. These results suggest that ZmHaspin plays different roles during mitosis and meiosis. Knockout of ZmHaspin led to decreased H3T3 phosphorylation and histone H3 serine 10 phosphorylation, and defects in chromosome alignment and segregation in mitosis. These lines of evidence suggest that Haspin regulates chromosome segregation in plants via the mechanism described for humans, namely, H3T3 phosphorylation. Plant Haspin proteins lack the RTYGA and PxVxL motifs needed to bind Pds5B and heterochromatin protein 1, and no obvious cohesion defects were detected in ZmHaspin knockout plants. Taken together, these results highlight the conserved but slightly different roles of Haspin proteins in cell division in plants and in animals.


Sign in / Sign up

Export Citation Format

Share Document