scholarly journals Complex Formation with Rev1 Enhances the Proficiency of Saccharomyces cerevisiae DNA Polymerase ζ for Mismatch Extension and for Extension Opposite from DNA Lesions

2006 ◽  
Vol 26 (24) ◽  
pp. 9555-9563 ◽  
Author(s):  
Narottam Acharya ◽  
Robert E. Johnson ◽  
Satya Prakash ◽  
Louise Prakash

ABSTRACT Rev1, a Y family DNA polymerase (Pol) functions together with Polζ, a B family Pol comprised of the Rev3 catalytic subunit and Rev7 accessory subunit, in promoting translesion DNA synthesis (TLS). Extensive genetic studies with Saccharomyces cerevisiae have indicated a requirement of both Polζ and Rev1 for damage-induced mutagenesis, implicating their involvement in mutagenic TLS. Polζ is specifically adapted to promote the extension step of lesion bypass, as it proficiently extends primer termini opposite DNA lesions, and it is also a proficient extender of mismatched primer termini on undamaged DNAs. Since TLS through UV-induced lesions and various other DNA lesions does not depend upon the DNA-synthetic activity of Rev1, Rev1 must contribute to Polζ-dependent TLS in a nonenzymatic way. Here, we provide evidence for the physical association of Rev1 with Polζ and show that this binding is mediated through the C terminus of Rev1 and the polymerase domain of Rev3. Importantly, a rev1 mutant that lacks the C-terminal 72 residues which inactivate interaction with Rev3 exhibits the same high degree of UV sensitivity and defectiveness in UV-induced mutagenesis as that conferred by the rev1Δ mutation. We propose that Rev1 binding to Polζ is indispensable for the targeting of Polζ to the replication fork stalled at a DNA lesion. In addition to this structural role, Rev1 binding enhances the proficiency of Polζ for the extension of mismatched primer termini on undamaged DNAs and for the extension of primer termini opposite DNA lesions.

2020 ◽  
Vol 295 (25) ◽  
pp. 8350-8362 ◽  
Author(s):  
Claire Guérillon ◽  
Stine Smedegaard ◽  
Ivo A. Hendriks ◽  
Michael L. Nielsen ◽  
Niels Mailand

Translesion DNA synthesis (TLS) mediated by low-fidelity DNA polymerases is an essential cellular mechanism for bypassing DNA lesions that obstruct DNA replication progression. However, the access of TLS polymerases to the replication machinery must be kept tightly in check to avoid excessive mutagenesis. Recruitment of DNA polymerase η (Pol η) and other Y-family TLS polymerases to damaged DNA relies on proliferating cell nuclear antigen (PCNA) monoubiquitylation and is regulated at several levels. Using a microscopy-based RNAi screen, here we identified an important role of the SUMO modification pathway in limiting Pol η interactions with DNA damage sites in human cells. We found that Pol η undergoes DNA damage- and protein inhibitor of activated STAT 1 (PIAS1)-dependent polySUMOylation upon its association with monoubiquitylated PCNA, rendering it susceptible to extraction from DNA damage sites by SUMO-targeted ubiquitin ligase (STUbL) activity. Using proteomic profiling, we demonstrate that Pol η is targeted for multisite SUMOylation, and that collectively these SUMO modifications are essential for PIAS1- and STUbL-mediated displacement of Pol η from DNA damage sites. These findings suggest that a SUMO-driven feedback inhibition mechanism is an intrinsic feature of TLS-mediated lesion bypass functioning to curtail the interaction of Pol η with PCNA at damaged DNA to prevent harmful mutagenesis.


2005 ◽  
Vol 25 (21) ◽  
pp. 9734-9740 ◽  
Author(s):  
Narottam Acharya ◽  
Lajos Haracska ◽  
Robert E. Johnson ◽  
Ildiko Unk ◽  
Satya Prakash ◽  
...  

ABSTRACT The Rev1 protein of Saccharomyces cerevisiae functions in translesion synthesis (TLS) together with DNA polymerase (Pol) ζ, which is comprised of the Rev3 catalytic and the Rev7 accessory subunits. Rev1, a member of the Y family of Pols, differs from other members in its high degree of specificity for incorporating a C opposite template G as well as opposite an abasic site. Although Rev1 is indispensable for Polζ-dependent TLS, its DNA synthetic activity is not required for many of the Polζ-dependent lesion bypass events. This observation has suggested a structural role for Rev1 in this process. Here we show that in yeast, Rev1 forms a stable complex with Rev7, and the two proteins copurify. Importantly, the polymerase-associated domain (PAD) of Rev1 mediates its binding to Rev7. These observations reveal a novel role for the PAD region of Rev1 in protein-protein interactions, and they raise the possibility of a similar involvement of the PAD of other Y family Pols in protein-protein interactions. We discuss the possible roles of Rev1 versus the Rev1-Rev7 complex in TLS.


2020 ◽  
Author(s):  
Claudia Lancey ◽  
Muhammad Tehseen ◽  
Masateru Takahashi ◽  
Mohamed A. Sobhy ◽  
Timothy J. Ragan ◽  
...  

Replacement of the stalled replicative polymerase (Pol δ) at a DNA lesion by the error-prone DNA polymerase κ (Pol κ) restarts synthesis past the lesion to prevent genome instability. The switching from Pol δ to Pol κ is mediated by the processivity clamp PCNA but the structural basis of this mechanism is unknown. We determined the Cryo-EM structures of human Pol κ–DNA–PCNA complex and of a stalled Pol δ–DNA–PCNA complex at 3.9 and 4.7 Å resolution, respectively. In Pol κ complex, the C-terminus of the PAD domain docks the catalytic core to one PCNA protomer in an angled orientation, bending the DNA exiting Pol κ active site through PCNA. In Pol δ complex, the DNA is disengaged from the active site but is retained by the thumb domain. We present a model for polymerase switching facilitated by Pol κ recruitment to PCNA and Pol κ conformational sampling to seize the DNA from stalled Pol δ assisted by PCNA tilting.


Genetics ◽  
1990 ◽  
Vol 124 (4) ◽  
pp. 817-831 ◽  
Author(s):  
R H Schiestl ◽  
S Prakash ◽  
L Prakash

Abstract rad6 mutants of Saccharomyces cerevisiae are defective in the repair of damaged DNA, DNA damage induced mutagenesis, and sporulation. In order to identify genes that can substitute for RAD6 function, we have isolated genomic suppressors of the UV sensitivity of rad6 deletion (rad6 delta) mutations and show that they also suppress the gamma-ray sensitivity but not the UV mutagenesis or sporulation defects of rad6. The suppressors show semidominance for suppression of UV sensitivity and dominance for suppression of gamma-ray sensitivity. The six suppressor mutations we isolated are all alleles of the same locus and are also allelic to a previously described suppressor of the rad6-1 nonsense mutation, SRS2. We show that suppression of rad6 delta is dependent on the RAD52 recombinational repair pathway since suppression is not observed in the rad6 delta SRS2 strain containing an additional mutation in either the RAD51, RAD52, RAD54, RAD55 or RAD57 genes. Possible mechanisms by which SRS2 may channel unrepaired DNA lesions into the RAD52 DNA repair pathway are discussed.


2008 ◽  
Vol 36 (12) ◽  
pp. 3867-3878 ◽  
Author(s):  
Jessica A. Brown ◽  
Sean A. Newmister ◽  
Kevin A. Fiala ◽  
Zucai Suo

2003 ◽  
Vol 50 (4) ◽  
pp. 921-939 ◽  
Author(s):  
Joanna Krwawicz ◽  
Anna Czajkowska ◽  
Magdalena Felczak ◽  
Irena Pietrzykowska

Mutagenesis in Escherichia coli, a subject of many years of study is considered to be related to DNA replication. DNA lesions nonrepaired by the error-free nucleotide excision repair (NER), base excision repair (BER) and recombination repair (RR), stop replication at the fork. Reinitiation needs translesion synthesis (TLS) by DNA polymerase V (UmuC), which in the presence of accessory proteins, UmuD', RecA and ssDNA-binding protein (SSB), has an ability to bypass the lesion with high mutagenicity. This enables reinitiation and extension of DNA replication by DNA polymerase III (Pol III). We studied UV- and MMS-induced mutagenesis of lambdaO(am)8 phage in E. coli 594 sup+ host, unable to replicate the phage DNA, as a possible model for mutagenesis induced in nondividing cells (e.g. somatic cells). We show that in E. coli 594 sup+ cells UV- and MMS-induced mutagenesis of lambdaO(am)8 phage may occur. This mutagenic process requires both the UmuD' and C proteins, albeit a high level of UmuD' and low level of UmuC seem to be necessary and sufficient. We compared UV-induced mutagenesis of lambdaO(am)8 in nonpermissive (594 sup+) and permissive (C600 supE) conditions for phage DNA replication. It appeared that while the mutagenesis of lambdaO(am)8 in 594 sup+ requires the UmuD' and C proteins, which can not be replaced by other SOS-inducible protein(s), in C600 supE their functions may be replaced by other inducible protein(s), possibly DNA polymerase IV (DinB). Mutations induced under nonpermissive conditions for phage DNA replication are resistant to mismatch repair (MMR), while among those induced under permissive conditions, only about 40% are resistant.


FEBS Journal ◽  
2007 ◽  
Vol 274 (13) ◽  
pp. 3340-3350 ◽  
Author(s):  
María Victoria García-Ortiz ◽  
Teresa Roldán-Arjona ◽  
Rafael R. Ariza
Keyword(s):  

2004 ◽  
Vol 24 (16) ◽  
pp. 6900-6906 ◽  
Author(s):  
M. Todd Washington ◽  
Irina G. Minko ◽  
Robert E. Johnson ◽  
Lajos Haracska ◽  
Thomas M. Harris ◽  
...  

ABSTRACT Rev1, a member of the Y family of DNA polymerases, functions in lesion bypass together with DNA polymerase ζ (Polζ). Rev1 is a highly specialized enzyme in that it incorporates only a C opposite template G. While Rev1 plays an indispensable structural role in Polζ-dependent lesion bypass, the role of its DNA synthetic activity in lesion bypass has remained unclear. Since interactions of DNA polymerases with the DNA minor groove contribute to the nearly equivalent efficiencies and fidelities of nucleotide incorporation opposite each of the four template bases, here we examine the possibility that unlike other DNA polymerases, Rev1 does not come into close contact with the minor groove of the incipient base pair, and that enables it to incorporate a C opposite the N 2-adducted guanines in DNA. To test this idea, we examined whether Rev1 could incorporate a C opposite the γ-hydroxy-1,N 2-propano-2′deoxyguanosine DNA minor-groove adduct, which is formed from the reaction of acrolein with the N 2 of guanine. Acrolein, an α,β-unsaturated aldehyde, is generated in vivo as the end product of lipid peroxidation and from other oxidation reactions. We show here that Rev1 efficiently incorporates a C opposite this adduct from which Polζ subsequently extends, thereby completing the lesion bypass reaction. Based upon these observations, we suggest that an important role of the Rev1 DNA synthetic activity in lesion bypass is to incorporate a C opposite the various N 2-guanine DNA minor-groove adducts that form in DNA.


2007 ◽  
Vol 282 (11) ◽  
pp. 8188-8198 ◽  
Author(s):  
Kevin A. Fiala ◽  
Cameron D. Hypes ◽  
Zucai Suo

2017 ◽  
Vol 114 (11) ◽  
pp. E2205-E2214 ◽  
Author(s):  
Shih-Hsun Hung ◽  
Ronald P. Wong ◽  
Helle D. Ulrich ◽  
Cheng-Fu Kao

DNA lesion bypass is mediated by DNA damage tolerance (DDT) pathways and homologous recombination (HR). The DDT pathways, which involve translesion synthesis and template switching (TS), are activated by the ubiquitylation (ub) of PCNA through components of the RAD6-RAD18 pathway, whereas the HR pathway is independent of RAD18. However, it is unclear how these processes are coordinated within the context of chromatin. Here we show that Bre1, an ubiquitin ligase specific for histone H2B, is recruited to chromatin in a manner coupled to replication of damaged DNA. In the absence of Bre1 or H2Bub, cells exhibit accumulation of unrepaired DNA lesions. Consequently, the damaged forks become unstable and resistant to repair. We provide physical, genetic, and cytological evidence that H2Bub contributes toward both Rad18-dependent TS and replication fork repair by HR. Using an inducible system of DNA damage bypass, we further show that H2Bub is required for the regulation of DDT after genome duplication. We propose that Bre1-H2Bub facilitates fork recovery and gap-filling repair by controlling chromatin dynamics in response to replicative DNA damage.


Sign in / Sign up

Export Citation Format

Share Document