scholarly journals Determinants of Myogenic Specificity within MyoD Are Required for Noncanonical E Box Binding

2007 ◽  
Vol 27 (16) ◽  
pp. 5910-5920 ◽  
Author(s):  
Analeah B. Heidt ◽  
Anabel Rojas ◽  
Ian S. Harris ◽  
Brian L. Black

ABSTRACT The MyoD family of basic helix-loop-helix (bHLH) transcription factors has the remarkable ability to induce myogenesis in vitro and in vivo. This myogenic specificity has been mapped to two amino acids in the basic domain, an alanine and threonine, referred to as the myogenic code. These essential determinants of myogenic specificity are conserved in all MyoD family members from worms to humans, yet their function in myogenesis is unclear. Induction of the muscle transcriptional program requires that MyoD be able to locate and stably bind to sequences present in the promoter regions of critical muscle genes. Recent studies have shown that MyoD binds to noncanonical E boxes in the myogenin gene, a critical locus required for myogenesis, through interactions with resident heterodimers of the HOX-TALE transcription factors Pbx1A and Meis1. In the present study, we show that the myogenic code is required for MyoD to bind to noncanonical E boxes in the myogenin promoter and for the formation of a tetrameric complex with Pbx/Meis. We also show that these essential determinants of myogenesis are sufficient to confer noncanonical E box binding to the E12 basic domain. Thus, these data show that noncanonical E box binding correlates with myogenic potential, and we speculate that the myogenic code residues in MyoD function as myogenic determinants via their role in noncanonical E box binding and recognition.

2007 ◽  
Vol 6 (4) ◽  
pp. 734-743 ◽  
Author(s):  
Setsu Endoh-Yamagami ◽  
Kiyoshi Hirakawa ◽  
Daisuke Morioka ◽  
Ryouichi Fukuda ◽  
Akinori Ohta

ABSTRACT The expression of the ALK1 gene, which encodes cytochrome P450, catalyzing the first step of alkane oxidation in the alkane-assimilating yeast Yarrowia lipolytica, is highly regulated and can be induced by alkanes. Previously, we identified a cis-acting element (alkane-responsive element 1 [ARE1]) in the ALK1 promoter. We showed that a basic helix-loop-helix (bHLH) protein, Yas1p, binds to ARE1 in vivo and mediates alkane-dependent transcription induction. Yas1p, however, does not bind to ARE1 by itself in vitro, suggesting that Yas1p requires another bHLH protein partner for its DNA binding, as many bHLH transcription factors function by forming heterodimers. To identify such a binding partner of Yas1p, here we screened open reading frames encoding proteins with the bHLH motif from the Y. lipolytica genome database and identified the YAS2 gene. The deletion of the YAS2 gene abolished the alkane-responsive induction of ALK1 transcription and the growth of the yeast on alkanes. We revealed that Yas2p has transactivation activity. Furthermore, Yas1p and Yas2p formed a protein complex that was required for the binding of these proteins to ARE1. These findings allow us to postulate a model in which bHLH transcription factors Yas1p and Yas2p form a heterocomplex and mediate the transcription induction in response to alkanes.


Author(s):  
Marie V. Wong ◽  
Paaventhan Palasingam ◽  
Prasanna R. Kolatkar

The ID proteins are named for their role as inhibitors of DNA binding and differentiation. They contain a helix–loop–helix (HLH) domain but lack a basic DNA-binding domain. In complex with basic HLH (bHLH) transcription factors, gene expression is regulated by DNA-binding inactivation. Although the HLH domain is highly conserved and shares a similar topology, the IDs preferentially bind class I bHLH-group members such as E47 (TCF3) but not the class III bHLH member Myc. A structure of an ID protein could potentially shed light on its mechanism. Owing to their short half-livesin vivoand reportedin vitroinstability, this paper describes the strategies that went into expressing sufficient soluble and stable ID2 to finally obtain diffraction-quality crystals. A 2.1 Å resolution data set was collected from a crystal belonging to space groupP3121 with unit-cell parametersa=b= 51.622,c= 111.474 Å, α = β = 90, γ = 120° that was obtained by hanging-drop vapour diffusion in a precipitant solution consisting of 0.1 MMES pH 6.5, 2.0 Mpotassium acetate. The solvent content was consistent with the presence of one or two molecules in the asymmetric unit.


1993 ◽  
Vol 13 (6) ◽  
pp. 3514-3521 ◽  
Author(s):  
C Martínez ◽  
J Modolell ◽  
J Garrell

The Achaete (Ac) protein, a transcriptional regulator of the basic-helix-loop-helix (bHLH) type, confers upon ectodermal cells the ability to become neural precursors. Its temporally and spatially regulated expression, together with that of the related Scute (Sc) protein, helps define the pattern of Drosophila melanogaster sensory organs. We have examined the transcriptional control of the ac gene and shown, using in vivo assays, that several E-boxes, putative interacting sites for bHLH proteins, present in the ac promoter are most important for ac regulation. They most likely mediate ac self-stimulation and sc trans-activation. We also demonstrate that ac transcription is negatively regulated in vivo by the gene extramacrochaetae (emc) in a manner dependent on Ac and Sc products. emc encodes an HLH protein that lacks the basic region and presumably antagonizes Ac and Sc function by sequestering these proteins in complexes unable to interact with DNA. Our results strongly support the model of negative regulation of emc on ac and sc transcription through titration of their products. As currently thought, this seems accomplished by heterodimerization via the HLH domain, because an amino acid substitution in this region abolishes the emc antagonistic effect both in vitro and in vivo.


2007 ◽  
Vol 27 (8) ◽  
pp. 2919-2933 ◽  
Author(s):  
Benoit Grondin ◽  
Martin Lefrancois ◽  
Mathieu Tremblay ◽  
Marianne Saint-Denis ◽  
André Haman ◽  
...  

ABSTRACT Transcription factors can function as DNA-binding-specific activators or as coactivators. c-Jun drives gene expression via binding to AP-1 sequences or as a cofactor for PU.1 in macrophages. c-Jun heterodimers bind AP-1 sequences with higher affinity than homodimers, but how c-Jun works as a coactivator is unknown. Here, we provide in vitro and in vivo evidence that c-Jun homodimers are recruited to the interleukin-1β (IL-1β) promoter in the absence of direct DNA binding via protein-protein interactions with DNA-anchored PU.1 and CCAAT/enhancer-binding protein β (C/EBPβ). Unexpectedly, the interaction interface with PU.1 and C/EBPβ involves four of the residues within the basic domain of c-Jun that contact DNA, indicating that the capacities of c-Jun to function as a coactivator or as a DNA-bound transcription factor are mutually exclusive. Our observations indicate that the IL-1β locus is occupied by PU.1 and C/EBPβ and poised for expression and that c-Jun enhances transcription by facilitating a rate-limiting step, the assembly of the RNA polymerase II preinitiation complex, with minimal effect on the local chromatin status. We propose that the basic domain of other transcription factors may also be redirected from a DNA interaction mode to a protein-protein interaction mode and that this switch represents a novel mechanism regulating gene expression profiles.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1319-1319
Author(s):  
Vladimir Jankovic ◽  
Alessia Ciarrocchi ◽  
Tony DeBlasio ◽  
Robert Benezra ◽  
Stephen D. Nimer

Abstract The ability of hematopoietic stem cells to tightly regulate the transition from relative quiescence and self-renewal to the transiently amplifying, differentiating progenitor fate is critical for HSC homeostasis as well as their regenerative capacity. We have recently described the diminished frequency and rapid exhaustion of HSC self-renewal capacity in the absence of the dominant negative helix-loop-helix molecule Id1. Furthermore, Id1 null HSCs have an increased rate of cycling, coupled with accelerated myeloid commitment both in vivo and in vitro. This is reflected in the elevated expression of myelo-erythroid transcription factors (c/EBPalpha and GATA1) within the Lin−c-kit+Sca-1+ population - “myeloid priming”. The major targets of Id1 mediated transcriptional repression are the ubiquitous E protein E2A as well as Ets transcription factors (Ets1 and Ets2). We hypothesized that the unrestrained activity of these and/or other targets of Id1 transcriptional repression leads to premature HSC commitment in Id1 null animals. Indeed, we show that HSC differentiation in culture can be delayed by transduction of E2A directed shRNA specifically in Id1 null, but not in wild-type Id1 expressing cells. This indicates an abnormal E2A activity in Id1 null HSCs that could be responsible for their increased differentiation status. To further define the transcriptional deregulation in Id1 null HSCs, we have used the Affymetrix microarray technology. We observed ~3 fold increased expression of the CDK inhibitor p21 in freshly isolated Id1 null HSCs and have confirmed this result by multiple independent qPCR measurements. The transcriptional induction of p21 by E2A as well as its repression by Id1 have been well established. Therefore, the observed p21 induction could be explained by the elevated level of E2A activity in HSCs in the absence of Id1 expression. To explore the functional significance of Id1 mediated p21 regulation in HSCs, we have generated p21/Id1 double knockout animals. Surprisingly, despite its reported function in restricting the cell cycle entry of normal HSCs, we show that in the context of Id1 loss, p21 expression is required for the accelerated HSC cycling, and unlike Id1 single null HSCs, p21/Id1 double knockout HSCs do not show accelerated myeloid differentiation in culture. Therefore, we propose that Id1 actively represses E2A activity in HSCs, as well as the induction of p21, which could be an important component of the HSC commitment program. Further studies will be presented defining the in vivo relevance of the Id1/p21 genetic interaction for HSC growth and differentiation.


1993 ◽  
Vol 13 (4) ◽  
pp. 2342-2353 ◽  
Author(s):  
M Therrien ◽  
J Drouin

Pro-opiomelanocortin (POMC)-expressing cells appear to be the first pituitary cells committed to hormone production. In this work, we have identified an element of the POMC promoter which confers cell-specific activity. This element did not exhibit any activity on its own and required at least one other element of the promoter to manifest its cell-specific activity. Fine mutagenesis of this element indicated that a CANNTG motif is responsible for activity. This E-box motif is typical of binding sites for helix-loop-helix (HLH) transcription factors; however, the POMC cell-specific E box cannot be replaced by other E boxes like the kappa E2 site of the immunoglobulin gene or a muscle-specific E box. Similar E boxes which are present in the insulin gene promoter were shown to contribute to the pancreatic specificity of the insulin promoter. However, E-box-binding proteins found in nuclear extracts from POMC-expressing AtT-20 cells and from insulin-expressing cells have different electrophoretic mobilities. The AtT-20 proteins were named CUTE (for corticotroph upstream transcription element-binding) proteins, and they were not found in any other cells. CUTE proteins have DNA-binding properties characteristic of HLH transcription factors. Overexpression of the dominant negative HLH protein Id or of the ubiquitous positive HLH factor rat Pan-2 decreased or augmented POMC promoter activity, respectively. These observations are consistent with the hypothesis that CUTE factors might be heterodimers. This hypothesis was further supported by antibody shift experiments and by abrogation of DNA binding in the presence of bacterially expressed Id protein. Thus, the cell-specific CUTE proteins and their binding site in the POMC promoter appear to be important determinants for cell specificity of this promoter. The requirement for HLH factors in POMC transcription also presents the possibility that these factors are involved in differentiation of pituitary cells, in analogy with the role of HLH factors in muscle development.


2019 ◽  
Author(s):  
Aleix Puig-Barbé ◽  
Joaquín de Navascués

ABSTRACTMultipotent adult stem cells must balance self-renewal with differentiation into various mature cell types. How this activity is molecularly regulated is poorly understood. By using genetic and molecular analyses in vivo, we show that a small network of basic Helix-Loop-Helix (bHLH) transcription factors controls both stemness and bi-potential differentiation in the Drosophila adult intestine. We find that homodimers of Daughterless (Da, homolog to mammalian E proteins) maintain the self-renewal of intestinal stem cells and antagonise the activity of heterodimers of Da and Scute (Sc, homolog to ASCL and known to promote intestinal secretory differentiation). We find a novel role for the HLH factor Extramacrochaetae (Emc, homolog to Id proteins), titrating Da and Sc to promote absorptive differentiation. We further show that Emc prevents committed absorptive progenitors from de-differentiating, revealing the plasticity of these cells. This mechanism of interaction partner-switching enables the active maintenance of stemness, but primes stem cells for differentiation along two alternative fates. Such regulatory logic could be recapitulated in other bipotent stem cell systems.


1993 ◽  
Vol 13 (4) ◽  
pp. 2342-2353
Author(s):  
M Therrien ◽  
J Drouin

Pro-opiomelanocortin (POMC)-expressing cells appear to be the first pituitary cells committed to hormone production. In this work, we have identified an element of the POMC promoter which confers cell-specific activity. This element did not exhibit any activity on its own and required at least one other element of the promoter to manifest its cell-specific activity. Fine mutagenesis of this element indicated that a CANNTG motif is responsible for activity. This E-box motif is typical of binding sites for helix-loop-helix (HLH) transcription factors; however, the POMC cell-specific E box cannot be replaced by other E boxes like the kappa E2 site of the immunoglobulin gene or a muscle-specific E box. Similar E boxes which are present in the insulin gene promoter were shown to contribute to the pancreatic specificity of the insulin promoter. However, E-box-binding proteins found in nuclear extracts from POMC-expressing AtT-20 cells and from insulin-expressing cells have different electrophoretic mobilities. The AtT-20 proteins were named CUTE (for corticotroph upstream transcription element-binding) proteins, and they were not found in any other cells. CUTE proteins have DNA-binding properties characteristic of HLH transcription factors. Overexpression of the dominant negative HLH protein Id or of the ubiquitous positive HLH factor rat Pan-2 decreased or augmented POMC promoter activity, respectively. These observations are consistent with the hypothesis that CUTE factors might be heterodimers. This hypothesis was further supported by antibody shift experiments and by abrogation of DNA binding in the presence of bacterially expressed Id protein. Thus, the cell-specific CUTE proteins and their binding site in the POMC promoter appear to be important determinants for cell specificity of this promoter. The requirement for HLH factors in POMC transcription also presents the possibility that these factors are involved in differentiation of pituitary cells, in analogy with the role of HLH factors in muscle development.


Development ◽  
1999 ◽  
Vol 126 (16) ◽  
pp. 3545-3559
Author(s):  
A.L. Greenwood ◽  
E.E. Turner ◽  
D.J. Anderson

Sensory and autonomic neurons of the vertebrate peripheral nervous system are derived from the neural crest. Here we use the expression of lineage-specific transcription factors as a means to identify neuronal subtypes that develop in rat neural crest cultures grown in a defined medium. Sensory neurons, identified by expression of the POU-domain transcription factor Brn-3.0, develop from dividing precursors that differentiate within 2 days following emigration from the neural tube. Most of these precursors generate sensory neurons even when challenged with BMP2, a factor that induces autonomic neurogenesis in many other cells in the explants. Moreover, BMP2 fails to prevent expression of the sensory-specific basic helix-loop-helix (bHLH) transcription factors neurogenin1, neurogenin2 and neuroD, although it induces expression of the autonomic-specific bHLH factor MASH1 and the paired homeodomain factor Phox2a in other cells. These data suggest that there are mitotically active precursors in the mammalian neural crest that can generate sensory neurons even in the presence of a strong autonomic-inducing cue. Further characterization of the neurons generated from such precursors indicates that, under these culture conditions, they exhibit a proprioceptive and/or mechanosensory, but not nociceptive, phenotype. Such precursors may therefore correspond to a lineally (Frank, E. and Sanes, J. (1991) Development 111, 895–908) and genetically (Ma, Q., Fode, C., Guillemot, F. and Anderson, D. J. (1999) Genes Dev. 13, in press) distinct subset of early-differentiating precursors of large-diameter sensory neurons identified in vivo.


Sign in / Sign up

Export Citation Format

Share Document