scholarly journals Krüppel-Like Zinc Finger Protein Glis2 Is Essential for the Maintenance of Normal Renal Functions

2008 ◽  
Vol 28 (7) ◽  
pp. 2358-2367 ◽  
Author(s):  
Yong-Sik Kim ◽  
Hong Soon Kang ◽  
Ronald Herbert ◽  
Ju Youn Beak ◽  
Jennifer B. Collins ◽  
...  

ABSTRACT To obtain insight into the physiological functions of the Krüppel-like zinc finger protein Gli-similar 2 (Glis2), mice deficient in Glis2 expression were generated. Glis2 mutant (Glis2mut) mice exhibit significantly shorter life spans than do littermate wild-type (WT) mice due to the development of progressive chronic kidney disease with features resembling nephronophthisis. Glis2mut mice develop severe renal atrophy involving increased cell death and basement membrane thickening in the proximal convoluted tubules. This development is accompanied by infiltration of lymphocytic inflammatory cells and interstitial/glomerular fibrosis. The severity of the fibrosis, inflammatory infiltrates, and glomerular and tubular changes progresses with age. Blood urea nitrogen and creatinine increase, and Glis2mut mice develop proteinuria and ultimately die prematurely of renal failure. A comparison of the gene expression profiles of kidneys from 25-day-old/60-day-old WT and Glis2mut mice by microarray analysis showed increased expressions of many genes involved in immune responses/inflammation and fibrosis/tissue remodeling in kidneys of Glis2mut mice, including several cytokines and adhesion and extracellular matrix proteins. Our data demonstrate that a deficiency in Glis2 expression leads to tubular atrophy and progressive fibrosis, similar to nephronophthisis, that ultimately results in renal failure. Our study indicates that Glis2 plays a critical role in the maintenance of normal kidney architecture and functions.

Brain ◽  
2019 ◽  
Vol 142 (8) ◽  
pp. 2380-2401 ◽  
Author(s):  
Saurav Brahmachari ◽  
Saebom Lee ◽  
Sangjune Kim ◽  
Changqing Yuan ◽  
Senthilkumar S Karuppagounder ◽  
...  

Abstract α-Synuclein misfolding and aggregation plays a major role in the pathogenesis of Parkinson’s disease. Although loss of function mutations in the ubiquitin ligase, parkin, cause autosomal recessive Parkinson’s disease, there is evidence that parkin is inactivated in sporadic Parkinson’s disease. Whether parkin inactivation is a driver of neurodegeneration in sporadic Parkinson’s disease or a mere spectator is unknown. Here we show that parkin in inactivated through c-Abelson kinase phosphorylation of parkin in three α-synuclein-induced models of neurodegeneration. This results in the accumulation of parkin interacting substrate protein (zinc finger protein 746) and aminoacyl tRNA synthetase complex interacting multifunctional protein 2 with increased parkin interacting substrate protein levels playing a critical role in α-synuclein-induced neurodegeneration, since knockout of parkin interacting substrate protein attenuates the degenerative process. Thus, accumulation of parkin interacting substrate protein links parkin inactivation and α-synuclein in a common pathogenic neurodegenerative pathway relevant to both sporadic and familial forms Parkinson’s disease. Thus, suppression of parkin interacting substrate protein could be a potential therapeutic strategy to halt the progression of Parkinson’s disease and related α-synucleinopathies.


Author(s):  
Min Duan ◽  
Xiao-Juan Ke ◽  
Hong-Xia Lan ◽  
Xi Yuan ◽  
Peng Huang ◽  
...  

Abstract Gibberellins (GAs) play important roles in the regulation of plant growth and development. The green revolution gene SD1 encoding gibberellin 20-oxidase 2 (GA20ox2) has been widely used in modern rice breeding. However, the molecular mechanism of how SD1/OsGA20ox2 expression is regulated remains unclear. Here, we report a Cys2/His2 zinc finger protein ZFP207 acting as a transcriptional repressor of OsGA20ox2. ZFP207 was mainly accumulated in young tissues and more specifically in culm nodes. ZFP207-overexpression (ZFP207OE) plants displayed semidwarfism phenotype and small grains by modulating cell length. RNA interference of ZFP207 caused increased plant height and grain length. The application of exogenous GA3 could rescue the semidwarf phenotype of ZFP207OE rice seedlings. Moreover, ZFP207 repressed the expression of OsGA20ox2 via binding to its promoter region. Taken together, ZFP207 acts as a transcriptional repressor of SD1/OsGA20ox2 and it may play a critical role in plant growth and development in rice through the fine-tuning of GA biosynthesis .


2013 ◽  
Author(s):  
Raffaella Spina ◽  
Gessica Filocamo ◽  
Enrico Iaccino ◽  
Stefania Scicchitano ◽  
Michela Lupia ◽  
...  

2019 ◽  
Vol 27 (5) ◽  
pp. 1644-1659 ◽  
Author(s):  
Yaping Nie ◽  
Shufang Cai ◽  
Renqiang Yuan ◽  
Suying Ding ◽  
Xumeng Zhang ◽  
...  

Abstract Zinc finger protein 422 (Zfp422) is a widely expressed zinc finger protein that serves as a transcriptional factor to regulate downstream gene expression, but until now, little is known about its roles in myogenesis. We found here that Zfp422 plays a critical role in skeletal muscle development and regeneration. It highly expresses in mouse skeletal muscle during embryonic development. Specific knockout of Zfp422 in skeletal muscle impaired embryonic muscle formation. Satellite cell-specific Zfp422 deletion severely inhibited muscle regeneration. Myoblast differentiation and myotube formation were suppressed in Zfp422-deleted C2C12 cells, isolated primary myoblasts, and satellite cells. Chromatin Immunoprecipitation Sequencing (ChIP-Seq) revealed that Zfp422 regulated ephrin type-A receptor 7 (EphA7) expression by binding an upstream 169-bp DNA sequence, which was proved to be an enhancer of EphA7. Knocking EphA7 down in C2C12 cells or deleting Zfp422 in myoblasts will inhibit cell apoptosis which is required for myoblast differentiation. These results indicate that Zfp422 is essential for skeletal muscle differentiation and fusion, through regulating EphA7 expression to maintain proper apoptosis.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1448-1448
Author(s):  
Huiyu Li ◽  
Xiaomei Chen ◽  
Wei Xiong ◽  
Fang Liu ◽  
Shiang Huang

Abstract Abstract 1448 Microvesicles (MVs) are submicrometric membrane fragments and they can “hijack” membrane components and engulf cytoplasmic contents from their cellular origin. MVs are enriched in various bioactive molecules of their parental cells, such as proteins, DNA, mRNA and miRNAs. Microvesicles (MVs) released by leukemia cells constitute an important part of the leukemia microenvironment. As a cell-to-cell communication tool, MVs transfer microRNA (miRNA) between cells. MVs miRNAs may also provide an insight in the role of miRNAs playing in the underlying of pathophysiologic processes of various leukemia. We determined the miRNA expression profiles of ALL-derived MVs using Agilent miRNA microarray analysis. The five miRNAs obtained by microarray profiling were validated using real-time PCR. The putative target genes were predicted by bioformation software. We identified 182 and 166 dysregulated miRNAs in MVs derived from Nalm 6 cells and from Jurkat cells, respectively. Both up regulated (123/182 in Nalm 6-MVs and 114/166 in Jurkat- MVs) and down regulated (59/182 in Nalm 6-MVs and 52/166 in Jurkat- MVs) expressions were observed compared with MVs from normal peripheral blood the MVs normal control. When we analyzed those miRNA with bioinformatic tools (TargetScan), we found an interesting phenomenon that presence of 111 zinc fingers genes were regulated by 52 miRNAs, indicating that the ALL-microvesicles were enriched with miRNAs regulating zinc finger proteins. They encompassed zinc fingers and homeoboxes 2, zinc finger, ZZ-type containing 3, zinc finger, SWIM-type containing 1, zinc finger, RAN-binding domain containing 3, zinc finger, NFX1-type containing 1, zinc finger, MYM-type 4, zinc finger, FYVE domain containing 1 and their 5 subtypes; zinc finger, DHHC-type containing16, and other subtypes; zinc finger, CCHC domain containing 14 and 7A, zinc finger, BED-type containing 4; zinc finger protein, X-linked; zinc finger protein, multitype 2; zinc finger protein 81, and their 55 subtypes; zinc finger and SCAN domain containing 18, zinc finger and BTB domain containing 9. ALL-microvesicles were enriched with expression changes of distinct sets of miRNAs regulating zinc finger proteins. This provides clues that genes commonly function together. It is worth noting that 52 miRNA regulating above zinc finger protein genes were up-expressed, suggeting that miRNA regulating zinc fingers were active in ALL-MVs. Zinc finger proteins are important transcriptions in eukaryotes and play roles in regulating gene. Some members of the Zinc finger family have close relationaship with tumour. Zinc finger X-chromosomal protein (Zfx) is a protein that in humans is encoded by the ZFX gene. The level of Zfx expression correlates with aggressiveness and severity in many cancer types, including prostate cancer, breast cancer, gastric tumoural tissues, and leukemia. [1,2]. Zinc finger and homeoboxes 2 (ZHX2) was target gene of miRNA-1260. The role of miRNA are negatively regulated host gene expressions. ZHX2 inhibits HCC cell proliferation by preventing expression of Cyclins A and E, and reduces growth of xenograft tumors. Loss of nuclear ZHX2 might be an early step in the development of HCC[3]. In our study, the miRNA-1260 were 9 fold higher in ALL MVs. In leukeima microenvironment, ALL-MVs may transfer aberantly expressed miRNAs to their target cell lead to abnormally regulated the zinc finger proteins that may play roles in ALL. In this study, we demonstrated that ALL-microvesicles were enriched with expression changes of distinct sets of miRNAs regulating zinc finger proteins. Futhermore, Zinc fingers were active in ALL-MVs and commonly function together. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 21 (8) ◽  
pp. 2754
Author(s):  
Yuan-Tai Liu ◽  
Qi-Han Shi ◽  
He-Jie Cao ◽  
Qi-Bin Ma ◽  
Hai Nian ◽  
...  

Aluminum (Al) toxicity limits plant growth and has a major impact on the agricultural productivity in acidic soils. The zinc-finger protein (ZFP) family plays multiple roles in plant development and abiotic stresses. Although previous reports have confirmed the function of these genes, their transcriptional mechanisms in wild soybean (Glycine soja) are unclear. In this study, GsGIS3 was isolated from Al-tolerant wild soybean gene expression profiles to be functionally characterized in Arabidopsis. Laser confocal microscopic observations demonstrated that GsGIS3 is a nuclear protein, containing one C2H2 zinc-finger structure. Our results show that the expression of GsGIS3 was of a much higher level in the stem than in the leaf and root and was upregulated under AlCl3, NaCl or GA3 treatment. Compared to the control, overexpression of GsGIS3 in Arabidopsis improved Al tolerance in transgenic lines with more root growth, higher proline and lower Malondialdehyde (MDA) accumulation under concentrations of AlCl3. Analysis of hematoxylin staining indicated that GsGIS3 enhanced the resistance of transgenic plants to Al toxicity by reducing Al accumulation in Arabidopsis roots. Moreover, GsGIS3 expression in Arabidopsis enhanced the expression of Al-tolerance-related genes. Taken together, our findings indicate that GsGIS3, as a C2H2 ZFP, may enhance tolerance to Al toxicity through positive regulation of Al-tolerance-related genes.


2019 ◽  
Author(s):  
Min Duan ◽  
Xiao-Juan Ke ◽  
Hong-Xia Lan ◽  
Xi Yuan ◽  
Peng Huang ◽  
...  

AbstractGibberellins (GAs) play important roles in the regulation of plant growth and development. The green evolution geneSD1encoding gibberellin 20-oxidase 2 (GA20ox2) has been widely used in modern rice breeding. However, the molecular mechanism of howSD1/OsGA20ox2expression is regulated remains unclear. Here we report a Cys2/His2 zinc finger protein ZFP207 acting as a transcriptional repressor ofOsGA20ox2.ZFP207was mainly accumulated in young tissues and more specifically in culm nodes.ZFP207-overexpression (ZFP207OE) plants displayed semi-dwarfism phenotype and small grains by modulating cell length. RNA interference ofZFP207caused higher plant and longer grains. The endogenous bioactive GA levels were significantly reduced inZFP207OEplants and application of exogenous GA3rescued the semi-dwarf phenotype. Thein vivoandin vitrostudies showed that ZFP207 repressed the expression ofOsGA20ox2via binding to its promoter region. Together, ZFP207 acts as a transcriptional repressor of gibberellins biosynthesis and it may play a critical role in plant growth and development through fine-tuning GA biosynthesis in rice.


2018 ◽  
Vol 30 (9) ◽  
pp. 1161 ◽  
Author(s):  
Yong Sheng Zhang ◽  
Ying Chun Du ◽  
Li Rong Sun ◽  
Xu Hai Wang ◽  
Shuai Bing Liu ◽  
...  

The mammalian Y chromosome plays a critical role in spermatogenesis. However, the exact functions of each gene on the Y chromosome have not been completely elucidated, due, in part, to difficulties in gene targeting analysis of the Y chromosome. The zinc finger protein, Y-linked (ZFY) gene was first proposed to be a sex determination factor, although its function in spermatogenesis has recently been elucidated. Nevertheless, ZFY gene targeting analysis has not been performed to date. In the present study, RNA interference (RNAi) was used to generate ZFY-interrupted Hu sheep by injecting short hairpin RNA (shRNA) into round spermatids. The resulting spermatozoa exhibited abnormal sperm morphology, including spermatozoa without tails and others with head and tail abnormalities. Quantitative real-time polymerase chain reaction analysis showed that ZFY mRNA expression was decreased significantly in Hu sheep with interrupted ZFY compared with wild-type Hu sheep. The sex ratio of lambs also exhibited a bias towards females. Together, the experimental strategy and findings of the present study reveal that ZFY also functions in spermatogenesis in Hu sheep and facilitate the use of RNAi in the control of sex in Hu sheep.


2008 ◽  
Vol 3 (2) ◽  
pp. 128-130 ◽  
Author(s):  
Satoshi Iuchi ◽  
Yuriko Kobayashi ◽  
Hiroyuki Koyama ◽  
Masatomo Kobayashi

1995 ◽  
Vol 15 (11) ◽  
pp. 6075-6087 ◽  
Author(s):  
D Perrotti ◽  
P Melotti ◽  
T Skorski ◽  
I Casella ◽  
C Peschle ◽  
...  

Zinc finger genes encode proteins that act as transcription factors. The myeloid zinc finger 1 (MZF1) gene encodes a zinc finger protein with two DNA-binding domains that recognize two distinct consensus sequences, is preferentially expressed in hematopoietic cells, and may be involved in the transcriptional regulation of hematopoiesis-specific genes. Reverse transcription-PCR analysis of human peripheral blood CD34+ cells cultured under lineage-restricted conditions demonstrated MZF1 expression during both myeloid and erythroid differentiation. Sequence analysis of the 5'-flanking region of the CD34 and c-myb genes, which are a marker of and a transcriptional factor required for hematopoietic proliferation and differentiation, respectively, revealed closely spaced MZF1 consensus binding sites found by electrophoretic mobility shift assays to interact with recombinant MZF1 protein. Transient or constitutive MZF1 expression in different cell types resulted in specific inhibition of chloramphenicol acetyltransferase activity driven by the CD34 or c-myb 5'-flanking region. To determine whether transcriptional modulation by MZF1 activity plays a role in hematopoietic differentiation, constructs containing the MZF1 cDNA under the control of different promoters were transfected into murine embryonic stem cells which, under defined in vitro culture conditions, generate colonies of multiple hematopoietic lineages. Constitutive MZF1 expression interfered with the ability of embryonic stem cells to undergo hematopoietic commitment and erythromyeloid colony formation and prevented the induced expression of CD34 and c-myb mRNAs during differentiation of these cells. These data indicate that MZF1 plays a critical role in hematopoiesis by modulating the expression of genes involved in this process.


Sign in / Sign up

Export Citation Format

Share Document