scholarly journals Phosphorylation of FANCD2 on Two Novel Sites Is Required for Mitomycin C Resistance

2006 ◽  
Vol 26 (18) ◽  
pp. 7005-7015 ◽  
Author(s):  
Gary P. H. Ho ◽  
Steven Margossian ◽  
Toshiyasu Taniguchi ◽  
Alan D. D'Andrea

ABSTRACT The Fanconi anemia (FA) pathway is a DNA damage-activated signaling pathway which regulates cellular resistance to DNA cross-linking agents. Cloned FA genes and proteins cooperate in this pathway, and monoubiquitination of FANCD2 is a critical downstream event. The cell cycle checkpoint kinase ATR is required for the efficient monoubiquitination of FANCD2, while another checkpoint kinase, ATM, directly phosphorylates FANCD2 and controls the ionizing radiation (IR)-inducible intra-S-phase checkpoint. In the present study, we identify two novel DNA damage-inducible phosphorylation sites on FANCD2, threonine 691 and serine 717. ATR phosphorylates FANCD2 on these two sites, thereby promoting FANCD2 monoubiquitination and enhancing cellular resistance to DNA cross-linking agents. Phosphorylation of the sites is required for establishment of the intra-S-phase checkpoint response. IR-inducible phosphorylation of threonine 691 and serine 717 is also dependent on ATM and is more strongly impaired when both ATM and ATR are knocked down. Threonine 691 is phosphorylated during normal S-phase progression in an ATM-dependent manner. These findings further support the functional connection of ATM/ATR kinases and FANCD2 in the DNA damage response and support a role for the FA pathway in the coordination of the S phase of the cell cycle.

2003 ◽  
Vol 23 (3) ◽  
pp. 791-803 ◽  
Author(s):  
Robert S. Weiss ◽  
Philip Leder ◽  
Cyrus Vaziri

ABSTRACT Mouse Hus1 encodes an evolutionarily conserved DNA damage response protein. In this study we examined how targeted deletion of Hus1 affects cell cycle checkpoint responses to genotoxic stress. Unlike hus1− fission yeast (Schizosaccharomyces pombe) cells, which are defective for the G2/M DNA damage checkpoint, Hus1-null mouse cells did not inappropriately enter mitosis following genotoxin treatment. However, Hus1-deficient cells displayed a striking S-phase DNA damage checkpoint defect. Whereas wild-type cells transiently repressed DNA replication in response to benzo(a)pyrene dihydrodiol epoxide (BPDE), a genotoxin that causes bulky DNA adducts, Hus1-null cells maintained relatively high levels of DNA synthesis following treatment with this agent. However, when treated with DNA strand break-inducing agents such as ionizing radiation (IR), Hus1-deficient cells showed intact S-phase checkpoint responses. Conversely, checkpoint-mediated inhibition of DNA synthesis in response to BPDE did not require NBS1, a component of the IR-responsive S-phase checkpoint pathway. Taken together, these results demonstrate that Hus1 is required specifically for one of two separable mammalian checkpoint pathways that respond to distinct forms of genome damage during S phase.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 5332-5332
Author(s):  
Han Liu ◽  
Todd D Westergard ◽  
David Y Chen ◽  
Emily H.-Y. Cheng ◽  
James J.-D. Hsieh

Abstract Cell cycle checkpoints are implemented to safeguard our genome and the deregulation of which results in human cancers. Hence, it is of great significance to discover and investigate novel key constituents of the mammalian DNA damage response network. Human chromosome band 11q23 translocation disrupting the MLL gene leads to poor prognostic leukemias. MLL is a transcription co-activator that maintains HOX gene expression. The importance of HOX gene deregulation in MLL leukemogenesis has been intensively investigated. However, physiological murine MLL leukemia knockin models have indicated that incurred HOX gene aberration alone is insufficient to initiate MLL leukemia. Thus, additional signaling pathway must be involved, which remains to be discovered. Our recent studies demonstrated an intimate relationship between MLL and the cell cycle(Takeda et al. 2006, Genes & Development, 20, 2397–2409; Liu et al. 2007, Genes & Development, 21, 2385–2398). More importantly, our studies uncovered a critical role of MLL in executing the S phase checkpoint. We showed: Over-expression of MLL induces an S phase block. MLL accumulates in the S phase upon DNA damage. MLL deficiency results in radioresistant DNA synthesis (RDS) and chromatid-type chromosomal abnormalities, two signature characteristics of S phase checkpoint defects. We further determined the underlying mechanisms concerning the DNA damage-induced MLL accumulation. Our data showed that MLL is phosphorylated after DNA damage, which in turn blocks its degradation by SCFSkp2 in the S phase and results in the ultimate accumulation. Our data revealed the link between MLL and the S phase checkpoint, which provides novel insights into the mammalian cell cycle checkpoint network and human leukemia pathogenesis. Future studies utilizing murine leukemia models will be performed to examine whether MLL translocation compromises the S phase checkpoint and if the resulted dysfunction contributes to MLL leukemogenesis.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3256-3256 ◽  
Author(s):  
Takayuki Tabayashi ◽  
Yuka Tanaka ◽  
Yasuyuki Takahashi ◽  
Yuta Kimura ◽  
Tatsuki Tomikawa ◽  
...  

Abstract Multiple myeloma (MM) is a hematological malignancy that derives from the proliferation of unregulated plasma cells. Dramatic improvement in the clinical outcomes of both newly diagnosed and relapsed/refractory patients with MM has been achieved using many clinical approaches, including use of high-dose chemotherapy followed by hematopoietic stem cell transplantation, and new drugs, such as proteasome inhibitors, immunomodulatory drugs, and histone deacetylase inhibitors. However, most patients eventually relapse and develop drug resistance. Moreover, the prognosis of patients with bortezomib (BTZ) and/or lenalidomide (LEN)-resistant MM (key drugs in the treatment of MM) is very poor. Therefore, novel therapeutic approaches to overcome BTZ and LEN resistance are urgently needed in clinical settings. WEE1 is a cell-cycle checkpoint kinase and a key regulator of DNA damage surveillance pathways. In response to extrinsically induced DNA damage, WEE1 catalyzes inhibitory phosphorylation of both cyclin-dependent kinase1 and 2 (CDK1 and CDK2), leading to CDK1- and CDK2-induced cell cycle arrest at the G1, S, or G2-M phases. This cell-cycle arrest, in turn, allows for the damaged DNA to be repaired before the cell undergoes DNA replication, and prevents cells harboring unrepaired damaged DNA from mitotic lethality. Furthermore, recent research has shown that knockdown of WEE1 leads to DNA double-strand breaks specifically in S-phase cells undergoing DNA replication, and that WEE1 is most active in the S-phase, suggesting that WEE1 is involved in DNA synthesis. Overexpression of WEE1 has been observed in many types of cancers, including hepatic cancer, breast cancer, glioblastoma and gastric cancer, and high expression of WEE1 has been shown to correlate with poor prognosis. In addition, research has shown that inhibition of checkpoint kinase 1 (Chk1), a critical transducer of the DNA damage response, potentiates the cytotoxicity of chemotherapy on p53-deficient MM cells, which are regarded as chemotherapy-resistant, suggesting that inhibition of cell-cycle checkpoint kinase is involved in re-sensitization of refractory MM cells to anticancer drugs. These data suggest that WEE1 might be an attractive target for novel therapeutic agents against this incurable hematological malignancy. MK-1775 is a potent and highly-selective small-molecule inhibitor of WEE1. In the present study, we investigated the role of WEE1 in MM as a potential therapeutic target using MK-1775. MTSassays showed that single agent MK-1775 inhibited the proliferation of various MM cell lines, including the intrinsically LEN-resistant cell line, RPMI-8226, in a dose- (0 to 10 mM) and time- (0 to 72 h) dependent manner. Furthermore, the growth inhibition effect is irrespective of p53 status. To examine the mechanisms behind the growth inhibition effect induced by MK-1775, assays for apoptotic cell death were performed. These assays demonstrated that MK-1775 induces both early and late apoptosis in MM cells. To investigate the molecular mechanisms of MK-1775-induced cell death in MM cells, the expression of various cell death-associated proteins and downstream molecules of WEE1 were examined. Western blotting analysis showed that MK-1775 arrested cell growth and induced apoptotic cell death in MM cells in a dose-dependent manner by inhibiting both, the expression of the target molecules of Bcl-2 and MCL1, and the cleavage of PARP and Caspase 3. Similarly, there was a substantial inhibition of CDK1 phosphorylation downstream of WEE1. Moreover, an increased expression of histone H2AX was observed following administration of MK-1775, suggesting that MK-1775 results in cytotoxicity by direct DNA damage. Next, we examined the effects of MK-1775 on BTZ-resistant MM cells. Interestingly, MK-1775 inhibited the proliferation of both BTZ-sensitive wild-type MM cells and BTZ-resistant MM cells, suggesting that BTZ resistance can be overcome by targeting WEE1. Furthermore, in combination with BTZ, MK-1775 was able to re-sensitize BTZ-resistant MM cells to BTZ. These results indicate that inhibition of WEE1 might serve as an attractive therapeutic option for patients with both BTZ-resistant and LEN-resistant MM. In conclusion, our data suggest that WEE1 might be a promising molecular target for the treatment of MM. Disclosures Tokuhira: Bristol Myers Squibb Co., Ltd: Honoraria; Pfizer Co., Ltd: Honoraria; Eizai Co., Ltd: Honoraria.


2001 ◽  
Vol 21 (21) ◽  
pp. 7150-7162 ◽  
Author(s):  
Ronjon K. Chakraverty ◽  
Jonathan M. Kearsey ◽  
Thomas J. Oakley ◽  
Muriel Grenon ◽  
Maria-Angeles de la Torre Ruiz ◽  
...  

ABSTRACT Deletion of the Saccharomyces cerevisiae TOP3gene, encoding Top3p, leads to a slow-growth phenotype characterized by an accumulation of cells with a late S/G2content of DNA (S. Gangloff, J. P. McDonald, C. Bendixen, L. Arthur, and R. Rothstein, Mol. Cell. Biol. 14:8391–8398, 1994). We have investigated the function of TOP3 during cell cycle progression and the molecular basis for the cell cycle delay seen in top3Δ strains. We show that top3Δ mutants exhibit a RAD24-dependent delay in the G2 phase, suggesting a possible role for Top3p in the resolution of abnormal DNA structures or DNA damage arising during S phase. Consistent with this notion,top3Δ strains are sensitive to killing by a variety of DNA-damaging agents, including UV light and the alkylating agent methyl methanesulfonate, and are partially defective in the intra-S-phase checkpoint that slows the rate of S-phase progression following exposure to DNA-damaging agents. This S-phase checkpoint defect is associated with a defect in phosphorylation of Rad53p, indicating that, in the absence of Top3p, the efficiency of sensing the existence of DNA damage or signaling to the Rad53 kinase is impaired. Consistent with a role for Top3p specifically during S phase, top3Δ mutants are sensitive to the replication inhibitor hydroxyurea, expression of the TOP3 mRNA is activated in late G1 phase, and DNA damage checkpoints operating outside of S phase are unaffected by deletion of TOP3. All of these phenotypic consequences of loss of Top3p function are at least partially suppressed by deletion of SGS1, the yeast homologue of the human Bloom's and Werner's syndrome genes. These data implicate Top3p and, by inference, Sgs1p in an S-phase-specific role in the cellular response to DNA damage. A model proposing a role for these proteins in S phase is presented.


1999 ◽  
Vol 19 (8) ◽  
pp. 5535-5547 ◽  
Author(s):  
Tadayuki Takeda ◽  
Keiko Ogino ◽  
Etsuko Matsui ◽  
Min Kwan Cho ◽  
Hiroyuki Kumagai ◽  
...  

ABSTRACT Saccharomyces cerevisiae CDC7 encodes a serine/threonine kinase required for G1/S transition, and its related kinases are present in fission yeast as well as in higher eukaryotes, including humans. Kinase activity of Cdc7 protein depends on the regulatory subunit, Dbf4, which also interacts with replication origins. We have identified him1+ from two-hybrid screening with Hsk1, a fission yeast homologue of Cdc7 kinase, and showed that it encodes a regulatory subunit of Hsk1. Him1, identical to Dfp1, previously identified as an associated molecule of Hsk1, binds to Hsk1 and stimulates its kinase activity, which phosphorylates both catalytic and regulatory subunits as well as recombinant MCM2 protein in vitro. him1+ is essential for DNA replication in fission yeast cells, and its transcription is cell cycle regulated, increasing at middle M to late G1. The protein level is low at START in G1, increases at the G1/S boundary, and is maintained at a high level throughout S phase. Him1 protein is hyperphosphorylated at G1/S through S during the cell cycle as well as in response to early S-phase arrest induced by nucleotide deprivation. Deletion of one of the motifs conserved in regulatory subunits for Cdc7-related kinases as well as alanine substitution of three serine and threonine residues present in the same motif resulted in a defect in checkpoint regulation normally induced by hydroxyurea treatment. The alanine mutant also showed growth retardation after UV irradiation and the addition of methylmethane sulfonate. In keeping with this result, a database search indicates that him1+ is identical to rad35+ . Our results reveal a novel function of the Cdc7/Dbf4-related kinase complex in S-phase checkpoint control as well as in growth recovery from DNA damage in addition to its predicted essential function in S-phase initiation.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Liz Hernandez Borrero ◽  
David T Dicker ◽  
John Santiago ◽  
Jennifer Sanders ◽  
Xiaobing Tian ◽  
...  

Mutations in TP53 occur commonly in the majority of human tumors and confer aggressive tumor phenotypes, including metastasis and therapy resistance. CB002 and structural-analogs restore p53 signaling in tumors with mutant-p53 but we find that unlike other xanthines such as caffeine, pentoxifylline, and theophylline, they do not deregulate the G2 checkpoint. Novel CB002-analogs induce pro-apoptotic Noxa protein in an ATF3/4-dependent manner, whereas caffeine, pentoxifylline, and theophylline do not. By contrast to caffeine, CB002-analogs target an S-phase checkpoint associated with increased p-RPA/RPA2, p-ATR, decreased Cyclin A, p-histone H3 expression, and downregulation of essential proteins in DNA-synthesis and DNA-repair. CB002-analog #4 enhances cell death, and decreases Ki-67 in patient-derived tumor-organoids without toxicity to normal human cells. Preliminary in vivo studies demonstrate anti-tumor efficacy in mice. Thus, a novel class of anti-cancer drugs shows the activation of p53 pathway signaling in tumors with mutated p53, and targets an S-phase checkpoint.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3831-3831
Author(s):  
Leena Chaudhuri ◽  
James M Bogenberger ◽  
Lisa Sproat ◽  
James L Slack ◽  
Veena Fauble ◽  
...  

Abstract Cytarabine (AraC) resistance is a fundamental feature of refractory/relapsed AML. RNA interference (RNAi) screens conducted in our laboratory recently identified WEE1 kinase (WEE1) as one of the top candidate genes and target in leukemias in combination with AraC. WEE1 is a tyrosine kinase belonging to the Ser/Thr family of protein kinases and acts as a negative regulator of mitotic entry by controlling DNA damage (DDR) and cell cycle checkpoint responses. The WEE1 inhibitor MK1775 potently synergizes with AraC ex vivo and in vitro and clinical trials are in preparation. However, the mechanism of action for the anti-leukemic activity of MK1775 with AraC remains unknown. To elucidate genes mediating activity of the combination, we first performed siRNA rescue screens silencing a custom set of 44 genes involved in WEE1 regulation under combined AraC + MK1775 to identify sensitizers and markers of resistance. The MRN (MRE11, Rad51, NBS1) complex and particularly NBS1 were potent modifiers of AraC and MK1775. Focusing on NBS1 since it is proposed to centrally regulate the defense capacity of leukemic cells, we identified that NBS1 phosphorylation at Ser343 (the ATM regulation site) is significantly altered both in cell lines and primary AML samples under combined AraC+MK1775 treatment as compared to single agent MK1775. In parallel, lower phosphorylation of ATMS1981(an autophosphorylation site in response to DNA strand breaks), was observed indicating that the ATM-CHEK1 pathway is not activated under co-treatment. Further Homologous recombination (HR)-mediated repair was compromised by AraC+MK1775 shown by DR-GFP expression vector to measure intracellular HR capacity: post-transfection of the I-SceI nuclease which cleaves non-functioning GFP tandem repeats to form a functional GFP unit, the HR was reduced with the combination. Consistently other HR markers decreased as well. Delayed accumulation of Cyclin A (indicative of S-phase progression) and greater inhibition of phospho-Cdk2Y15in synchronized cells treated with AraC + MK1775 in comparison to controls was observed. In addition the cell cycle was globally dysregulated by slower S-phase kinetics (progression), a completely abrogated G2/M checkpoint/phase as well as de-regulated DNA replication origin formation and firing as evidenced by Cdt1 and Mus81. As a consequence high single and double strand breaks (ɣH2AX) were observed with an increase in phospho-histone H3 in AraC + MK1775 treated cells compared to untreated cells or MK1775 single agent, confirming faster mitotic entry. Changes were followed by massive induction of apoptosis. Since WEE1 is implicated in leukemic stem cell maintenance we examined the long term effects of the combination in colony forming assays. AraC + MK1775 treated leukemic cells obtained from patients with AML were re-plated on Methocult after drug washout and colonies counted after 14 days. While MK1775 as a single agent could reduce colony formation by 4 fold compared to controls and lower dose AraC, co-treatment with low to moderate doses of AraC and MK1775 reduced colony formation by more than 7 fold and to almost zero in some primary specimens. Taken together, these results suggest that leukemia cells co-treated with AraC + MK1775 lost their ability to activate DNA damage and repair pathways mainly by compromising the MRN complex via NBS1 with subsequently reduced HR. The combination (as opposed to single agents) almost complete dysregulated the cell cycle and its checkpoints lead to DNA damage, genomic instability and rapid exit from the cell cycle with cell death via apoptosis. Thus we have molecularly characterized the detailed mechanisms underlying the potent AraC+WEE1 inhibition in AML and describe for the first time a therapeutic combination that has the potential to abrogate the MRN and NBS1 repair capacity which is central for drug resistance in AML. A key implication of our work is to provide a clinical rationale, mechanistic understanding and suggestions for biomarkers to clinically evaluate AraC + MK1775 in patients with AML. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5624-5624
Author(s):  
Dhyani Anamika ◽  
Patricia Favaro ◽  
Sara Teresinha Olalla Saad

Abstract Ankyrin repeat and KH domain-containing protein 1, ANKHD1, is highly expressed in myeloma cells and plays an important role in multiple myeloma (MM) progression and growth. ANKHD1 is found to be overexpressed in S phase of cell cycle in MM cells and silencing of ANKHD1 expression leads to accumulation of cells in S phase, suggesting a role in S phase progression (1). Earlier studies by our group reported that ANKHD1 silencing downregulates all replication dependent histones and that this downregulation may be associated with replication stress and DNA damage (2). We observed increased expression of γH2AX protein (phosphorylated histone H2A variant, H2AX, at Serine 139), a marker for DNA double strand breaks (DSBs) and an early sign of DNA damage induced by replication stress, in ANKHD1 silenced MM cells. In the present study we further sought to investigate the mechanisms underlying the induction of DNA damage on ANKHD1 silencing. We first confirmed the increased expression of γH2AX by flow cytometry analysis and observed that both the mean fluorescence intensity as well as percentage of γH2AX positive cells were higher in ANKHD1 silenced MM cells as compared to control cells. Phosphorylation of histone 2AX requires activation of the phosphatidylinositol-3-OH-kinase-like family of protein kinases, DNA-PKcs (DNA-dependent protein kinase), ATM (ataxia telangiectasia mutated)andATR (ATM-Rad3-related) that serves as central components of the signaling cascade initiated by DSBs. Hence, we checked for the expression of these kinases and observed increased phosphorylation of both ATM and ATR kinases in ANKHD1 silenced MM cells. There was no difference in the expressions of DNA-PKcs in control and ANKHD1 silenced cells by western blot. We next checked for the expression of CHK1 (checkpoint kinase 1) and CHK2 (checkpoint kinase 2), essential serine threonine kinases downstream of ATM and ATR. We observed a decrease in pCHK2 (phosphorylated CHK2 at Thr 68), with no change in expression of pCHK1 (phosphorylated CHK1 at Ser 345) total CHK1 or total CHK2. We also checked for expression of CDC25a (a member of the CDC25 family of dual-specificity phosphatases), that is specifically degraded in response to DNA damage (DSBs) and delays S phase progression via activation of ATM /ATR-CHK2 signaling pathway. Expression of CDC25a was significantly decreased in ANKHD1 silencing cells, confirming the induction of DSBs, and probably accounting for S phase delay on ANKHD1 silencing. Since there was decrease in active CHK2 (pCHK2) and no change in CHK1 required for degradation of CDC25a, we assume that decrease in CDC25a in ANKHD1 silenced MM cells may be via activation of ATM/ ATR pathway independent of CHK2/CHK1. Expression of several other downstream factors of DSBs induced DNA damage response and repair such as BRCA1, PTEN, DNMT1, SP1, HDAC2 were also found to be modulated in ANKHD1 silenced MM cells. In conclusion, ANKHD1 silencing in MM cells leads to DNA damage and modulates expression of several genes implicated in DNA damage and repair. DNA damage induced after ANKHD1 silencing in MM cells activates ATM/ ATR-CDC25a pathway which may lead to the activation of S phase checkpoint in MM cells. Results however are preliminary and further studies are required to understand the role of ANKHD1 in intra S phase check point. References: 1) ANKHD1 regulates cell cycle progression and proliferation in multiple myeloma cells. Dhyani et al. FEBS letters 2012; 586: 4311-18. 2) ANKHD1 is essential for repair of DNA double strand breaks in multiple myeloma. Dhyani et al. ASH Abstract, Blood 2015; 126:1762. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document