scholarly journals A Fission Yeast Gene,him1+/dfp1+, Encoding a Regulatory Subunit for Hsk1 Kinase, Plays Essential Roles in S-Phase Initiation as Well as in S-Phase Checkpoint Control and Recovery from DNA Damage

1999 ◽  
Vol 19 (8) ◽  
pp. 5535-5547 ◽  
Author(s):  
Tadayuki Takeda ◽  
Keiko Ogino ◽  
Etsuko Matsui ◽  
Min Kwan Cho ◽  
Hiroyuki Kumagai ◽  
...  

ABSTRACT Saccharomyces cerevisiae CDC7 encodes a serine/threonine kinase required for G1/S transition, and its related kinases are present in fission yeast as well as in higher eukaryotes, including humans. Kinase activity of Cdc7 protein depends on the regulatory subunit, Dbf4, which also interacts with replication origins. We have identified him1+ from two-hybrid screening with Hsk1, a fission yeast homologue of Cdc7 kinase, and showed that it encodes a regulatory subunit of Hsk1. Him1, identical to Dfp1, previously identified as an associated molecule of Hsk1, binds to Hsk1 and stimulates its kinase activity, which phosphorylates both catalytic and regulatory subunits as well as recombinant MCM2 protein in vitro. him1+ is essential for DNA replication in fission yeast cells, and its transcription is cell cycle regulated, increasing at middle M to late G1. The protein level is low at START in G1, increases at the G1/S boundary, and is maintained at a high level throughout S phase. Him1 protein is hyperphosphorylated at G1/S through S during the cell cycle as well as in response to early S-phase arrest induced by nucleotide deprivation. Deletion of one of the motifs conserved in regulatory subunits for Cdc7-related kinases as well as alanine substitution of three serine and threonine residues present in the same motif resulted in a defect in checkpoint regulation normally induced by hydroxyurea treatment. The alanine mutant also showed growth retardation after UV irradiation and the addition of methylmethane sulfonate. In keeping with this result, a database search indicates that him1+ is identical to rad35+ . Our results reveal a novel function of the Cdc7/Dbf4-related kinase complex in S-phase checkpoint control as well as in growth recovery from DNA damage in addition to its predicted essential function in S-phase initiation.

2002 ◽  
Vol 13 (2) ◽  
pp. 480-492 ◽  
Author(s):  
Tom D. Wolkow ◽  
Tamar Enoch

Fission yeast Rad3 is a member of a family of phosphoinositide 3-kinase -related kinases required for the maintenance of genomic stability in all eukaryotic cells. In fission yeast, Rad3 regulates the cell cycle arrest and recovery activities associated with the G2/M checkpoint. We have developed an assay that directly measures Rad3 kinase activity in cells expressing physiological levels of the protein. Using the assay, we demonstrate directly that Rad3 kinase activity is stimulated by checkpoint signals. Of the five other G2/M checkpoint proteins (Hus1, Rad1, Rad9, Rad17, and Rad26), only Rad26 was required for Rad3 kinase activity. Because Rad26 has previously been shown to interact constitutively with Rad3, our results demonstrate that Rad26 is a regulatory subunit, and Rad3 is the catalytic subunit, of the Rad3/Rad26 kinase complex. Analysis of Rad26/Rad3 kinase activation in rad26.T12, a mutant that is proficient for cell cycle arrest, but defective in recovery, suggests that these two responses to checkpoint signals require quantitatively different levels of kinase activity from the Rad3/Rad26 complex.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e15059-e15059
Author(s):  
Mark G. Frattini ◽  
Lucia Regales ◽  
Ruth Santos ◽  
Diana Carrillo

e15059 Background: Pancreatic cancer is the fourth leading cause of cancer death in the USA. In 2012, 43,920 people will be diagnosed and 37,390 people will die of this disease. 95% of tumors reveal loss of the p16 protein, a regulator of the G1 to S phase transition. Cdc7 is a conserved kinase required for the initiation of DNA replication, is a target of the S-phase checkpoint, and has a role in controlling the DNA damage response. Downregulation of Cdc7 kinase activity resulted in slowing of S-phase and cell cycle arrest followed by accumulation of DNA damage. Cdc7 has been shown to be over-expressed in many different tumors including the majority of solid and liquid tumors. In our laboratory a novel natural product small molecule inhibitor (MSK-777) has been identified, developed and shown to be efficacious in cell based cytotoxicity assays and multiple animal models of cancer. Methods: We have examined the efficacy of Cdc7 kinase inhibition as a therapeutic approach for pancreatic cancer by examining the sensitivity of MSK-777 in Capan-1, BxPC3, and PANC-1 cell lines. These cells were treated with MSK-777, control (DMSO), or hydroxyurea and collected for viable cell counts, fluorescence-activated cell sorting (FACS), and western blotting. Results: Cell viability analyses revealed that MSK-777 had a dramatic effect after 24 hours, reducing cell viability to less then 20% in BxPC3 cells. FACS results demonstrated that MSK-777 exposure resulted in cell cycle arrest at G1/S in Capan-1 and PANC-1 cells by 48 hours while BxPC3 cells showed a significant sub-G1 population by 24 hours, indicating apoptotic cell death. Western blotting showed that in BxPC3 cells phosphorylation of the mini-chromosome maintenance 2 protein (Mcm2) disappeared by 24 hours, indicating inactivation of the helicase that unwinds the strands of DNA during replication. Western blots of Capan-1 and PANC-1 cells showed lower levels of phosphorylated Mcm2 by 48 hours. Conclusions: We are currently examining the efficacy of MSK-777 in mouse models of orthotopically injected pancreatic cancer cells. Based on these collective results, inhibition of Cdc7 kinase activity with MSK-777 represents a novel and promising therapy for this deadly disease.


2003 ◽  
Vol 23 (3) ◽  
pp. 791-803 ◽  
Author(s):  
Robert S. Weiss ◽  
Philip Leder ◽  
Cyrus Vaziri

ABSTRACT Mouse Hus1 encodes an evolutionarily conserved DNA damage response protein. In this study we examined how targeted deletion of Hus1 affects cell cycle checkpoint responses to genotoxic stress. Unlike hus1− fission yeast (Schizosaccharomyces pombe) cells, which are defective for the G2/M DNA damage checkpoint, Hus1-null mouse cells did not inappropriately enter mitosis following genotoxin treatment. However, Hus1-deficient cells displayed a striking S-phase DNA damage checkpoint defect. Whereas wild-type cells transiently repressed DNA replication in response to benzo(a)pyrene dihydrodiol epoxide (BPDE), a genotoxin that causes bulky DNA adducts, Hus1-null cells maintained relatively high levels of DNA synthesis following treatment with this agent. However, when treated with DNA strand break-inducing agents such as ionizing radiation (IR), Hus1-deficient cells showed intact S-phase checkpoint responses. Conversely, checkpoint-mediated inhibition of DNA synthesis in response to BPDE did not require NBS1, a component of the IR-responsive S-phase checkpoint pathway. Taken together, these results demonstrate that Hus1 is required specifically for one of two separable mammalian checkpoint pathways that respond to distinct forms of genome damage during S phase.


2001 ◽  
Vol 21 (21) ◽  
pp. 7150-7162 ◽  
Author(s):  
Ronjon K. Chakraverty ◽  
Jonathan M. Kearsey ◽  
Thomas J. Oakley ◽  
Muriel Grenon ◽  
Maria-Angeles de la Torre Ruiz ◽  
...  

ABSTRACT Deletion of the Saccharomyces cerevisiae TOP3gene, encoding Top3p, leads to a slow-growth phenotype characterized by an accumulation of cells with a late S/G2content of DNA (S. Gangloff, J. P. McDonald, C. Bendixen, L. Arthur, and R. Rothstein, Mol. Cell. Biol. 14:8391–8398, 1994). We have investigated the function of TOP3 during cell cycle progression and the molecular basis for the cell cycle delay seen in top3Δ strains. We show that top3Δ mutants exhibit a RAD24-dependent delay in the G2 phase, suggesting a possible role for Top3p in the resolution of abnormal DNA structures or DNA damage arising during S phase. Consistent with this notion,top3Δ strains are sensitive to killing by a variety of DNA-damaging agents, including UV light and the alkylating agent methyl methanesulfonate, and are partially defective in the intra-S-phase checkpoint that slows the rate of S-phase progression following exposure to DNA-damaging agents. This S-phase checkpoint defect is associated with a defect in phosphorylation of Rad53p, indicating that, in the absence of Top3p, the efficiency of sensing the existence of DNA damage or signaling to the Rad53 kinase is impaired. Consistent with a role for Top3p specifically during S phase, top3Δ mutants are sensitive to the replication inhibitor hydroxyurea, expression of the TOP3 mRNA is activated in late G1 phase, and DNA damage checkpoints operating outside of S phase are unaffected by deletion of TOP3. All of these phenotypic consequences of loss of Top3p function are at least partially suppressed by deletion of SGS1, the yeast homologue of the human Bloom's and Werner's syndrome genes. These data implicate Top3p and, by inference, Sgs1p in an S-phase-specific role in the cellular response to DNA damage. A model proposing a role for these proteins in S phase is presented.


2009 ◽  
Vol 35 (3) ◽  
pp. 327-339 ◽  
Author(s):  
Neil Johnson ◽  
Dongpo Cai ◽  
Richard D. Kennedy ◽  
Shailja Pathania ◽  
Mansi Arora ◽  
...  

2001 ◽  
Vol 21 (6) ◽  
pp. 1997-2007 ◽  
Author(s):  
Duncan J. Clarke ◽  
Guillaume Mondesert ◽  
Marisa Segal ◽  
Bonnie L. Bertolaet ◽  
Sanne Jensen ◽  
...  

ABSTRACT In budding yeast, anaphase initiation is controlled by ubiquitin-dependent degradation of Pds1p. Analysis of pds1mutants implicated Pds1p in the DNA damage, spindle assembly, and S-phase checkpoints. Though some components of these pathways are known, others remain to be identified. Moreover, the essential function of Pds1p, independent of its role in checkpoint control, has not been elucidated. To identify loci that genetically interact withPDS1, we screened for dosage suppressors of a temperature-sensitive pds1 allele, pds1-128, defective for checkpoint control at the permissive temperature and essential for viability at 37°C. Genetic and functional interactions of two suppressors are described. RAD23 andDDI1 suppress the temperature and hydroxyurea, but not radiation or nocodazole, sensitivity of pds1-128. rad23 and ddi1 mutants are partially defective in S-phase checkpoint control but are proficient in DNA damage and spindle assembly checkpoints. Therefore, Rad23p and Ddi1p participate in a subset of Pds1p-dependent cell cycle controls. Both Rad23p and Ddi1p contain ubiquitin-associated (UBA) domains which are required for dosage suppression of pds1-128. UBA domains are found in several proteins involved in ubiquitin-dependent proteolysis, though no function has been assigned to them. Deletion of the UBA domains of Rad23p and Ddi1p renders cells defective in S-phase checkpoint control, implicating UBA domains in checkpoint signaling. Since Pds1p destruction, and thus checkpoint regulation of mitosis, depends on ubiquitin-dependent proteolysis, we propose that the UBA domains functionally interact with the ubiquitin system to control Pds1p degradation in response to checkpoint activation.


1999 ◽  
Vol 19 (7) ◽  
pp. 4888-4896 ◽  
Author(s):  
Guy Oshiro ◽  
Julia C. Owens ◽  
Yiqun Shellman ◽  
Robert A. Sclafani ◽  
Joachim J. Li

ABSTRACT In Saccharomyces cerevisiae, the heteromeric kinase complex Cdc7p-Dbf4p plays a pivotal role at replication origins in triggering the initiation of DNA replication during the S phase. We have assayed the kinase activity of endogenous levels of Cdc7p kinase by using a likely physiological target, Mcm2p, as a substrate. Using this assay, we have confirmed that Cdc7p kinase activity fluctuates during the cell cycle; it is low in the G1 phase, rises as cells enter the S phase, and remains high until cells complete mitosis. These changes in kinase activity cannot be accounted for by changes in the levels of the catalytic subunit Cdc7p, as these levels are constant during the cell cycle. However, the fluctuations in kinase activity do correlate with levels of the regulatory subunit Dbf4p. The regulation of Dbf4p levels can be attributed in part to increased degradation of the protein in G1 cells. This G1-phase instability is cdc16 dependent, suggesting a role of the anaphase-promoting complex in the turnover of Dbf4p. Overexpression of Dbf4p in the G1 phase can partially overcome this elevated turnover and lead to an increase in Cdc7p kinase activity. Thus, the regulation of Dbf4p levels through the control of Dbf4p degradation has an important role in the regulation of Cdc7p kinase activity during the cell cycle.


1998 ◽  
Vol 18 (5) ◽  
pp. 2721-2728 ◽  
Author(s):  
Scott Davey ◽  
Christine S. Han ◽  
Sarah A. Ramer ◽  
Jennifer C. Klassen ◽  
Adam Jacobson ◽  
...  

ABSTRACT The human BLM gene is a member of the Escherichia coli recQ helicase family, which includes the Saccharomyces cerevisiae SGS1 and human WRN genes. Defects inBLM are responsible for the human disease Bloom’s syndrome, which is characterized in part by genomic instability and a high incidence of cancer. Here we describe the cloning ofrad12 +, which is the fission yeast homolog ofBLM and is identical to the recently reportedrhq1 + gene. We showed that rad12null cells are sensitive to DNA damage induced by UV light and γ radiation, as well as to the DNA synthesis inhibitor hydroxyurea. Overexpression of the wild-type rad12 + gene also leads to sensitivity to these agents and to defects associated with the loss of the S-phase and G2-phase checkpoint control. We showed genetically and biochemically thatrad12 + acts upstream fromrad9 +, one of the fission yeast G2checkpoint control genes, in regulating exit from the S-phase checkpoint. The physical chromosome segregation defects seen inrad12 null cells combined with the checkpoint regulation defect seen in the rad12 + overproducer implicate rad12 + as a key coupler of chromosomal integrity with cell cycle progression.


2006 ◽  
Vol 26 (18) ◽  
pp. 7005-7015 ◽  
Author(s):  
Gary P. H. Ho ◽  
Steven Margossian ◽  
Toshiyasu Taniguchi ◽  
Alan D. D'Andrea

ABSTRACT The Fanconi anemia (FA) pathway is a DNA damage-activated signaling pathway which regulates cellular resistance to DNA cross-linking agents. Cloned FA genes and proteins cooperate in this pathway, and monoubiquitination of FANCD2 is a critical downstream event. The cell cycle checkpoint kinase ATR is required for the efficient monoubiquitination of FANCD2, while another checkpoint kinase, ATM, directly phosphorylates FANCD2 and controls the ionizing radiation (IR)-inducible intra-S-phase checkpoint. In the present study, we identify two novel DNA damage-inducible phosphorylation sites on FANCD2, threonine 691 and serine 717. ATR phosphorylates FANCD2 on these two sites, thereby promoting FANCD2 monoubiquitination and enhancing cellular resistance to DNA cross-linking agents. Phosphorylation of the sites is required for establishment of the intra-S-phase checkpoint response. IR-inducible phosphorylation of threonine 691 and serine 717 is also dependent on ATM and is more strongly impaired when both ATM and ATR are knocked down. Threonine 691 is phosphorylated during normal S-phase progression in an ATM-dependent manner. These findings further support the functional connection of ATM/ATR kinases and FANCD2 in the DNA damage response and support a role for the FA pathway in the coordination of the S phase of the cell cycle.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Mark C Johnson ◽  
Geylani Can ◽  
Miguel Monteiro Santos ◽  
Diana Alexander ◽  
Philip Zegerman

Checkpoints maintain the order of cell cycle events during DNA damage or incomplete replication. How the checkpoint response is tailored to different phases of the cell cycle remains poorly understood. The S-phase checkpoint for example results in the slowing of replication, which in budding yeast occurs by Rad53-dependent inhibition of the initiation factors Sld3 and Dbf4. Despite this, we show here that Rad53 phosphorylates both of these substrates throughout the cell cycle at the same sites as in S-phase, suggesting roles for this pathway beyond S-phase. Indeed, we show that Rad53-dependent inhibition of Sld3 and Dbf4 limits re-replication in G2/M, preventing gene amplification. In addition, we show that inhibition of Sld3 and Dbf4 in G1 prevents premature initiation at all origins at the G1/S transition. This study redefines the scope of the 'S-phase checkpoint' with implications for understanding checkpoint function in cancers that lack cell cycle controls.


Sign in / Sign up

Export Citation Format

Share Document