Positive and negative transcriptional elements of the human type IV collagenase gene

1990 ◽  
Vol 10 (12) ◽  
pp. 6524-6532
Author(s):  
S M Frisch ◽  
J H Morisaki

Proteolysis by type IV collagenase (T4) has been implicated in the process of tumor metastasis. The T4 gene is expressed in fibroblasts, but not in normal epithelial cells, and its expression is specifically repressed by the E1A oncogene of adenovirus. We present an investigation of the transcriptional elements responsible for basal, E1A-repressible, and tissue-specific expression. 5'-Deletion analysis, DNase I footprinting, and gel mobility shift assays revealed a strong, E1A-repressible enhancer element, r2, located about 1,650 bp upstream of the start site. This enhancer bound a protein with binding specificity very similar to that of the transcription factor AP-2. A potent silencer sequence was found 2 to 5 bp downstream of this enhancer. The silencer repressed transcription from either r2 or AP-1 enhancer elements and in the context of either type IV collagenase or thymidine kinase (tk) gene core promoters; enhancerless transcription from the latter core promoter was also repressed. Comprising the silencer were two contiguous, autonomously functioning silencer elements. Negative regulation of T4 transcription by at least two factors was demonstrated. mcf-7 proteins specifically binding both elements were detected by gel mobility shift assays; a protein of approximately 185 kDa that bound to one of these elements was detected by DNA-protein cross-linking. The silencer repressed transcription, in an r2 enhancer-tk promoter context, much more efficiently in T4-nonproducing cells (mcf-7 or HeLa) than in T4-producing cells (HT1080), suggesting that cell type-specific silencing may contribute to the regulation of this gene.

1990 ◽  
Vol 10 (12) ◽  
pp. 6524-6532 ◽  
Author(s):  
S M Frisch ◽  
J H Morisaki

Proteolysis by type IV collagenase (T4) has been implicated in the process of tumor metastasis. The T4 gene is expressed in fibroblasts, but not in normal epithelial cells, and its expression is specifically repressed by the E1A oncogene of adenovirus. We present an investigation of the transcriptional elements responsible for basal, E1A-repressible, and tissue-specific expression. 5'-Deletion analysis, DNase I footprinting, and gel mobility shift assays revealed a strong, E1A-repressible enhancer element, r2, located about 1,650 bp upstream of the start site. This enhancer bound a protein with binding specificity very similar to that of the transcription factor AP-2. A potent silencer sequence was found 2 to 5 bp downstream of this enhancer. The silencer repressed transcription from either r2 or AP-1 enhancer elements and in the context of either type IV collagenase or thymidine kinase (tk) gene core promoters; enhancerless transcription from the latter core promoter was also repressed. Comprising the silencer were two contiguous, autonomously functioning silencer elements. Negative regulation of T4 transcription by at least two factors was demonstrated. mcf-7 proteins specifically binding both elements were detected by gel mobility shift assays; a protein of approximately 185 kDa that bound to one of these elements was detected by DNA-protein cross-linking. The silencer repressed transcription, in an r2 enhancer-tk promoter context, much more efficiently in T4-nonproducing cells (mcf-7 or HeLa) than in T4-producing cells (HT1080), suggesting that cell type-specific silencing may contribute to the regulation of this gene.


1994 ◽  
Vol 14 (2) ◽  
pp. 934-943
Author(s):  
R J Garzon ◽  
Z E Zehner

Vimentin, a member of the intermediate filament protein family, exhibits tissue- as well as development-specific expression. Transcription factors that are involved in expression of the chicken vimentin gene have been described and include a cis-acting silencer element (SE3) that is involved in the down-regulation of this gene (F. X. Farrell, C. M. Sax, and Z. E. Zehner, Mol. Cell. Biol. 10:2349-2358, 1990). In this study, we report the identification of two additional silencer elements (SE1 and SE2). We show by transfection analysis that all three silencer elements are functionally active and that optimal silencing occurs when multiple (at least two) silencer elements are present. In addition, the previously identified SE3 can be divided into three subregions, each of which is moderately active alone. By gel mobility shift assays, all three silencer elements plus SE3 subregions bind a protein which by Southwestern (DNA-protein) blot analysis is identical in molecular mass (approximately 95 kDa). DNase I footprinting experiments indicate that this protein binds to purine-rich sites. Therefore, multiple elements appear to be involved in the negative regulation of the chicken vimentin gene, which may be important in the regulation of other genes as well.


1994 ◽  
Vol 14 (2) ◽  
pp. 934-943 ◽  
Author(s):  
R J Garzon ◽  
Z E Zehner

Vimentin, a member of the intermediate filament protein family, exhibits tissue- as well as development-specific expression. Transcription factors that are involved in expression of the chicken vimentin gene have been described and include a cis-acting silencer element (SE3) that is involved in the down-regulation of this gene (F. X. Farrell, C. M. Sax, and Z. E. Zehner, Mol. Cell. Biol. 10:2349-2358, 1990). In this study, we report the identification of two additional silencer elements (SE1 and SE2). We show by transfection analysis that all three silencer elements are functionally active and that optimal silencing occurs when multiple (at least two) silencer elements are present. In addition, the previously identified SE3 can be divided into three subregions, each of which is moderately active alone. By gel mobility shift assays, all three silencer elements plus SE3 subregions bind a protein which by Southwestern (DNA-protein) blot analysis is identical in molecular mass (approximately 95 kDa). DNase I footprinting experiments indicate that this protein binds to purine-rich sites. Therefore, multiple elements appear to be involved in the negative regulation of the chicken vimentin gene, which may be important in the regulation of other genes as well.


1990 ◽  
Vol 10 (10) ◽  
pp. 5177-5186
Author(s):  
J Zhang ◽  
S T Jacob

Previous studies in our laboratory have characterized a 174-base-pair (bp) enhancer sequence in the rat ribosomal DNA spacer region that exhibits all of the characteristics of a polymerase (Pol) II enhancer. Further studies showed that at least half of the enhancer activity resides in a 37-bp motif (E1) within the 174-bp spacer sequence that is located between positions -2.183 and -2.219 kilobase pairs upstream of the initiation site. To identify the factor(s) that binds specifically to the 37-bp enhancer domain, we fractionated whole-cell extract from rat adenocarcinoma ascites cells by chromatography on a series of columns, including an oligodeoxynucleotide affinity column. The final preparation contained two polypeptides of molecular weights 79,400 and 89,100 and was completely devoid of RNA Pol I activity. Electrophoretic mobility shift analysis showed that the polypeptides in the purified preparation (designated E1BF) interacted with both the enhancer element and the core promoter. To determine whether each polypeptide can separately bind to the core promoter and the enhancer, the individual components were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, renatured, and subjected to gel retardation analysis. This experiment demonstrated that both polypeptides interacted with the two cis-acting sequences. The specificity of the binding was demonstrated by competition with unlabeled 37-bp and core promoter fragments and lack of competition with nonspecific DNAs in the mobility shift assay. The 37-bp enhancer as well as the downstream sequence of the core promoter were protected by E1BF in the DNase I footprinting assay. Addition of E1BF to limiting amounts of fraction DE-B, which contains all factors essential for Pol I-directed transcription, resulted in three- to fourfold stimulation of ribosomal DNA transcription. Comparison of molecular weights and footprinting profiles did not reveal any relationship between E1BF and other Pol I trans-acting factors.


1993 ◽  
Vol 13 (2) ◽  
pp. 861-868
Author(s):  
T E Wilson ◽  
A R Mouw ◽  
C A Weaver ◽  
J Milbrandt ◽  
K L Parker

As part of its trophic action to maintain the steroidogenic capacity of adrenocortical cells, corticotropin (ACTH) increases the transcription of the cytochrome P-450 steroid hydroxylase genes, including the gene encoding steroid 21-hydroxylase (21-OHase). We previously identified several promoter elements that regulate 21-OHase gene expression in mouse Y1 adrenocortical tumor cells. One of these elements, located at nucleotide -65, closely resembles the recognition sequence of the orphan nuclear receptor NGFI-B, suggesting that NGFI-B regulates this essential steroidogenic enzyme. To explore this possibility, we first used in situ hybridization to demonstrate high levels of NGFI-B transcripts in the adrenal cortex of the adult rat. In cultured mouse Y1 adrenocortical cells, treatment with ACTH, the major regulator of 21-OHase transcription, rapidly increased NGFI-B expression. Gel mobility shift and DNase I footprinting experiments showed that recombinantly expressed NGFI-B interacts specifically with the 21-OHase -65 element and identified one complex formed by Y1 extracts and the 21-OHase -65 element that contains NGFI-B. Expression of NGFI-B significantly augmented the activity of the intact 21-OHase promoter, while mutations of the -65 element that abolish NGFI-B binding markedly diminished NGFI-B-mediated transcriptional activation. Specific mutations of NGFI-B shown previously to impair either DNA binding or transcriptional activation diminished the effect of NGFI-B coexpression on 21-OHase expression. Finally, an oligonucleotide containing the NGFI-B response element conferred ACTH response to a core promoter from the prolactin gene, showing that this element is sufficient for ACTH induction. Collectively, these results identify a cellular promoter element that is regulated by NGFI-B and implicate NGFI-B in the transcriptional induction of 21-OHase by ACTH.


2007 ◽  
Vol 189 (9) ◽  
pp. 3660-3664 ◽  
Author(s):  
Suvit Loprasert ◽  
Wirongrong Whangsuk ◽  
James M. Dubbs ◽  
Ratiboot Sallabhan ◽  
Kumpanart Somsongkul ◽  
...  

ABSTRACT Sinorhizobium meliloti hpdA, which encodes the herbicide target 4-hydroxyphenylpyruvate dioxygenase, is positively regulated by HpdR. Gel mobility shift and DNase I footprinting analyses revealed that HpdR binds to a region that spans two conserved direct-repeat sequences within the hpdR-hpdA intergenic space. HpdR-dependent hpdA transcription occurs in the presence of 4-hydroxyphenylpyruvate, tyrosine, and phenylalanine, as well as during starvation.


1992 ◽  
Vol 283 (3) ◽  
pp. 905-911 ◽  
Author(s):  
C G Penner ◽  
J R Davie

We identified the factor(s) that bind to the chicken erythroid-cell-specific histone H5 enhancer region which is located on the 3′ end of the gene. In DNAase I footprinting and u.v. cross-linking experiments with nuclear extracts from adult chicken immature erythrocytes, we determined that the trans-acting factor GATA-1 was the predominating protein interacting with the histone H5 enhancer. GATA-2 and GATA-3 were not detected. In contrast, gel-mobility-shift assays and competition experiments demonstrated that several specific complexes formed with the histone H5 enhancer region. Gel-mobility-shift assays with 23 bp oligonucleotides containing the GATA-binding site (AGATAA) of the histone H5 enhancer or of the beta-globin enhancer showed that the GATA sequence was sufficient for the formation of at least five complexes. Diagonal mobility-shift assays demonstrated that multisubunit complexes were forming with the GATA-1 protein. Our interpretation of the results is that GATA-1 interacts with a protein of approx. 105 kDa which, in turn, can associate with protein or protein complexes of approx. 26 kDa, 146 kDa and a protein(s) of molecular mass greater than 450 kDa. The different multisubunit complexes formed via the trans-acting factor GATA-1 may impart different transcriptional responses to the promoter and enhancer elements of the histone H5 and globin genes.


1990 ◽  
Vol 10 (10) ◽  
pp. 5177-5186 ◽  
Author(s):  
J Zhang ◽  
S T Jacob

Previous studies in our laboratory have characterized a 174-base-pair (bp) enhancer sequence in the rat ribosomal DNA spacer region that exhibits all of the characteristics of a polymerase (Pol) II enhancer. Further studies showed that at least half of the enhancer activity resides in a 37-bp motif (E1) within the 174-bp spacer sequence that is located between positions -2.183 and -2.219 kilobase pairs upstream of the initiation site. To identify the factor(s) that binds specifically to the 37-bp enhancer domain, we fractionated whole-cell extract from rat adenocarcinoma ascites cells by chromatography on a series of columns, including an oligodeoxynucleotide affinity column. The final preparation contained two polypeptides of molecular weights 79,400 and 89,100 and was completely devoid of RNA Pol I activity. Electrophoretic mobility shift analysis showed that the polypeptides in the purified preparation (designated E1BF) interacted with both the enhancer element and the core promoter. To determine whether each polypeptide can separately bind to the core promoter and the enhancer, the individual components were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, renatured, and subjected to gel retardation analysis. This experiment demonstrated that both polypeptides interacted with the two cis-acting sequences. The specificity of the binding was demonstrated by competition with unlabeled 37-bp and core promoter fragments and lack of competition with nonspecific DNAs in the mobility shift assay. The 37-bp enhancer as well as the downstream sequence of the core promoter were protected by E1BF in the DNase I footprinting assay. Addition of E1BF to limiting amounts of fraction DE-B, which contains all factors essential for Pol I-directed transcription, resulted in three- to fourfold stimulation of ribosomal DNA transcription. Comparison of molecular weights and footprinting profiles did not reveal any relationship between E1BF and other Pol I trans-acting factors.


2008 ◽  
Vol 190 (19) ◽  
pp. 6467-6474 ◽  
Author(s):  
Oliwia Makarewicz ◽  
Svetlana Neubauer ◽  
Corinna Preusse ◽  
Rainer Borriss

ABSTRACT We have previously identified the phyC gene of Bacillus amyloliquefaciens FZB45, encoding extracellular phytase, as a member of the PhoP regulon, which is expressed only during phosphate starvation. Its σA-dependent promoter is positively and negatively regulated by the phosphorylated PhoP response regulator in a phosphate-dependent manner (O. Makarewicz, S. Dubrac, T. Msadek, and R. Borriss, J. Bacteriol. 188:6953-6965, 2006). Here, we provide experimental evidence that the transcription of phyC underlies a second control mechanism exerted by the global transient-phase regulator protein, AbrB, which hinders its expression during exponential growth. Gel mobility shift and DNase I footprinting experiments demonstrated that AbrB binds to two different regions in the phyC promoter region that are separated by about 200 bp. One binding site is near the divergently orientated yodU gene, and the second site is located downstream of the phyC promoter and extends into the coding region of the phyC gene. Cooperative binding to the two distant binding regions is necessary for the AbrB-directed repression of phyC transcription. AbrB does not affect the transcription of the neighboring yodU gene.


2003 ◽  
Vol 370 (3) ◽  
pp. 771-784 ◽  
Author(s):  
Cristina PÉREZ-GÓMEZ ◽  
José M. MATÉS ◽  
Pedro M. GÓMEZ-FABRE ◽  
Antonio del CASTILLO-OLIVARES ◽  
Francisco J. ALONSO ◽  
...  

In mammals, glutaminase (GA) is expressed in most tissues, but the regulation of organ-specific expression is largely unknown. Therefore, as an essential step towards studying the regulation of GA expression, the human liver-type GA (hLGA) gene has been characterized. LGA genomic sequences were isolated using the genome walking technique. Analysis and comparison of these sequences with two LGA cDNA clones and the Human Genome Project database, allowed the determination of the genomic organization of the LGA gene. The gene has 18 exons and is approx. 18kb long. All exon/intron junction sequences conform to the GT/AG rule. Progressive deletion analysis of LGA promoter—luciferase constructs indicated that the core promoter is located between nt −141 and +410, with several potential regulatory elements: CAAT, GC, TATA-like, Ras-responsive element binding protein and specificity protein 1 (Sp1) sites. The minimal promoter was mapped within +107 and +410, where only an Sp1 binding site is present. Mutation experiments suggested that two CAAT recognition elements near the transcription-initiation site (-138 and −87), play a crucial role for optimal promoter activity. Electrophoretic mobility-shift assays confirmed the importance of CAAT- and TATA-like boxes to enhance basal transcription, and demonstrated that HNF-1 motif is a significant distal element for transcriptional regulation of the hLGA gene.


Sign in / Sign up

Export Citation Format

Share Document