The orphan nuclear receptor NGFI-B regulates expression of the gene encoding steroid 21-hydroxylase

1993 ◽  
Vol 13 (2) ◽  
pp. 861-868
Author(s):  
T E Wilson ◽  
A R Mouw ◽  
C A Weaver ◽  
J Milbrandt ◽  
K L Parker

As part of its trophic action to maintain the steroidogenic capacity of adrenocortical cells, corticotropin (ACTH) increases the transcription of the cytochrome P-450 steroid hydroxylase genes, including the gene encoding steroid 21-hydroxylase (21-OHase). We previously identified several promoter elements that regulate 21-OHase gene expression in mouse Y1 adrenocortical tumor cells. One of these elements, located at nucleotide -65, closely resembles the recognition sequence of the orphan nuclear receptor NGFI-B, suggesting that NGFI-B regulates this essential steroidogenic enzyme. To explore this possibility, we first used in situ hybridization to demonstrate high levels of NGFI-B transcripts in the adrenal cortex of the adult rat. In cultured mouse Y1 adrenocortical cells, treatment with ACTH, the major regulator of 21-OHase transcription, rapidly increased NGFI-B expression. Gel mobility shift and DNase I footprinting experiments showed that recombinantly expressed NGFI-B interacts specifically with the 21-OHase -65 element and identified one complex formed by Y1 extracts and the 21-OHase -65 element that contains NGFI-B. Expression of NGFI-B significantly augmented the activity of the intact 21-OHase promoter, while mutations of the -65 element that abolish NGFI-B binding markedly diminished NGFI-B-mediated transcriptional activation. Specific mutations of NGFI-B shown previously to impair either DNA binding or transcriptional activation diminished the effect of NGFI-B coexpression on 21-OHase expression. Finally, an oligonucleotide containing the NGFI-B response element conferred ACTH response to a core promoter from the prolactin gene, showing that this element is sufficient for ACTH induction. Collectively, these results identify a cellular promoter element that is regulated by NGFI-B and implicate NGFI-B in the transcriptional induction of 21-OHase by ACTH.

1993 ◽  
Vol 13 (2) ◽  
pp. 861-868 ◽  
Author(s):  
T E Wilson ◽  
A R Mouw ◽  
C A Weaver ◽  
J Milbrandt ◽  
K L Parker

As part of its trophic action to maintain the steroidogenic capacity of adrenocortical cells, corticotropin (ACTH) increases the transcription of the cytochrome P-450 steroid hydroxylase genes, including the gene encoding steroid 21-hydroxylase (21-OHase). We previously identified several promoter elements that regulate 21-OHase gene expression in mouse Y1 adrenocortical tumor cells. One of these elements, located at nucleotide -65, closely resembles the recognition sequence of the orphan nuclear receptor NGFI-B, suggesting that NGFI-B regulates this essential steroidogenic enzyme. To explore this possibility, we first used in situ hybridization to demonstrate high levels of NGFI-B transcripts in the adrenal cortex of the adult rat. In cultured mouse Y1 adrenocortical cells, treatment with ACTH, the major regulator of 21-OHase transcription, rapidly increased NGFI-B expression. Gel mobility shift and DNase I footprinting experiments showed that recombinantly expressed NGFI-B interacts specifically with the 21-OHase -65 element and identified one complex formed by Y1 extracts and the 21-OHase -65 element that contains NGFI-B. Expression of NGFI-B significantly augmented the activity of the intact 21-OHase promoter, while mutations of the -65 element that abolish NGFI-B binding markedly diminished NGFI-B-mediated transcriptional activation. Specific mutations of NGFI-B shown previously to impair either DNA binding or transcriptional activation diminished the effect of NGFI-B coexpression on 21-OHase expression. Finally, an oligonucleotide containing the NGFI-B response element conferred ACTH response to a core promoter from the prolactin gene, showing that this element is sufficient for ACTH induction. Collectively, these results identify a cellular promoter element that is regulated by NGFI-B and implicate NGFI-B in the transcriptional induction of 21-OHase by ACTH.


1990 ◽  
Vol 10 (12) ◽  
pp. 6524-6532
Author(s):  
S M Frisch ◽  
J H Morisaki

Proteolysis by type IV collagenase (T4) has been implicated in the process of tumor metastasis. The T4 gene is expressed in fibroblasts, but not in normal epithelial cells, and its expression is specifically repressed by the E1A oncogene of adenovirus. We present an investigation of the transcriptional elements responsible for basal, E1A-repressible, and tissue-specific expression. 5'-Deletion analysis, DNase I footprinting, and gel mobility shift assays revealed a strong, E1A-repressible enhancer element, r2, located about 1,650 bp upstream of the start site. This enhancer bound a protein with binding specificity very similar to that of the transcription factor AP-2. A potent silencer sequence was found 2 to 5 bp downstream of this enhancer. The silencer repressed transcription from either r2 or AP-1 enhancer elements and in the context of either type IV collagenase or thymidine kinase (tk) gene core promoters; enhancerless transcription from the latter core promoter was also repressed. Comprising the silencer were two contiguous, autonomously functioning silencer elements. Negative regulation of T4 transcription by at least two factors was demonstrated. mcf-7 proteins specifically binding both elements were detected by gel mobility shift assays; a protein of approximately 185 kDa that bound to one of these elements was detected by DNA-protein cross-linking. The silencer repressed transcription, in an r2 enhancer-tk promoter context, much more efficiently in T4-nonproducing cells (mcf-7 or HeLa) than in T4-producing cells (HT1080), suggesting that cell type-specific silencing may contribute to the regulation of this gene.


1994 ◽  
Vol 14 (4) ◽  
pp. 2503-2515
Author(s):  
A Andrianopoulos ◽  
W E Timberlake

The Aspergillus nidulans abaA gene encodes a protein containing an ATTS DNA-binding motif and is required for the terminal stages of conidiophore development. Results from gel mobility shift and protection, missing-contact, and interference footprint assays showed that AbaA binds to the sequence 5'-CATTCY-3', where Y is a pyrimidine, making both major- and minor-groove contacts. Multiple AbaA binding sites are present in the cis-acting regulatory regions of several developmentally controlled structural genes as well as those of the upstream regulatory gene brlA, the downstream regulatory gene wetA, and abaA itself. These cis-acting regulatory regions confer AbaA-dependent transcriptional activation in a heterologous Saccharomyces cerevisiae gene expression system. From these observations, we propose that the AbaA transcription factor establishes a novel set of feedback regulatory loops responsible for determination of conidiophore development.


1994 ◽  
Vol 14 (4) ◽  
pp. 2503-2515 ◽  
Author(s):  
A Andrianopoulos ◽  
W E Timberlake

The Aspergillus nidulans abaA gene encodes a protein containing an ATTS DNA-binding motif and is required for the terminal stages of conidiophore development. Results from gel mobility shift and protection, missing-contact, and interference footprint assays showed that AbaA binds to the sequence 5'-CATTCY-3', where Y is a pyrimidine, making both major- and minor-groove contacts. Multiple AbaA binding sites are present in the cis-acting regulatory regions of several developmentally controlled structural genes as well as those of the upstream regulatory gene brlA, the downstream regulatory gene wetA, and abaA itself. These cis-acting regulatory regions confer AbaA-dependent transcriptional activation in a heterologous Saccharomyces cerevisiae gene expression system. From these observations, we propose that the AbaA transcription factor establishes a novel set of feedback regulatory loops responsible for determination of conidiophore development.


1998 ◽  
Vol 159 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Z Yu ◽  
CH Lee ◽  
C Chinpaisal ◽  
LN Wei

The orphan nuclear receptor TR2 and its truncated isoform deleted in the ligand binding domain (LBD) were localized exclusively in the nuclei as revealed by two methods of detection. An anti-hemagglutinin (HA) antibody detected specific nuclear localization of HA-tagged receptors and the green fluorescent protein (GFP)-tagged receptors were found to be distributed in the nuclei of living cells. By deletion analyses, the sequence responsible for targeting this receptor into the nucleus was defined. A stretch of 20 amino acid residues (KDCVINKHHRNRCQYCRLQR) within the second zinc-finger of this receptor is required for its nuclear localization and this signal is constitutively active. No nuclear localization signal was found in the N-terminus or the LBD. The GFP-tagged receptor remained biologically active, as evidenced by its repressive activity on the reporter that carried a binding site for this receptor, a direct repeat-5 (DR5). An electrophoretic mobility shift assay was performed to characterize the binding property of TR2 and its truncated isoform. TR2 bound to the DR5 as dimers whereas its truncated isoform bound as monomers.


2010 ◽  
Vol 24 (12) ◽  
pp. 2281-2291 ◽  
Author(s):  
Victoria R. Kelly ◽  
Bin Xu ◽  
Rork Kuick ◽  
Ronald J. Koenig ◽  
Gary D. Hammer

Abstract Dax1 (Nr0b1) is an atypical orphan nuclear receptor that has recently been shown to play a role in mouse embryonic stem (mES) cell pluripotency. Here we describe a mechanism by which Dax1 maintains pluripotency. In steroidogenic cells, Dax1 protein interacts with the NR5A nuclear receptor steroidogenic factor 1 (Nr5a1) to inhibit transcription of target genes. In mES cells, liver receptor homolog 1 (LRH-1, Nr5a2), the other NR5A family member, is expressed, and LRH-1 has been shown to interact with Dax1. We demonstrate by coimmunoprecipitation that Dax1 is, indeed, able to form a complex with LRH-1 in mES cells. Because Dax1 was historically characterized as an inhibitor of steroidogenic factor 1-mediated transcriptional activation, we hypothesized that Dax1 would inhibit LRH-1 action in mES cells. Therefore, we examined the effect of Dax1 on the LRH-1-mediated activation of the critical ES cell factor Oct4 (Pou5f1). Chromatin immunoprecipitation localized Dax1 to the Oct4 promoter at the LRH-1 binding site, and luciferase assays together with Dax1 overexpression and knockdown experiments revealed that, rather than repress, Dax1 accentuated LRH-1-mediated activation of the Oct4 gene. Similar to our previously published studies that defined the RNA coactivator steroid receptor RNA activator as the critical mediator of Dax1 coactivation function, Dax1 augmentation of LRH-1-mediated Oct4 activation is dependent upon steroid receptor RNA activator. Finally, utilizing published chromatin immunoprecipitation data of whole-genome binding sites of LRH-1 and Dax1, we show that LRH-1 and Dax1 commonly colocalize at 288 genes (43% of LRH-1 target genes), many of which are involved in mES cell pluripotency. Thus, our results indicate that Dax1 plays an important role in the maintenance of pluripotency in mES cells through interaction with LRH-1 and transcriptional activation of Oct4 and other genes.


2020 ◽  
Vol 21 (9) ◽  
pp. 3309
Author(s):  
Hiroshi Matsuoka ◽  
Miyu Katayama ◽  
Ami Ohishi ◽  
Kaoruko Miya ◽  
Riki Tokunaga ◽  
...  

Oxysterols, important regulators of cholesterol homeostasis in the brain, are affected by neurodegenerative diseases. Early-onset Alzheimer’s disease is associated with higher levels of circulating brain-derived 24S-hydroxycholesterol (24S-OHC). Conversion of cholesterol to 24S-OHC is mediated by cholesterol 24S-hydroxylase in the brain, which is the major pathway for oxysterol elimination, followed by oxidation through hepatic first-pass metabolism by CYP39A1. Abnormal CYP39A1 expression results in accumulation of 24S-OHC, influencing neurodegenerative disease-related deterioration; thus, it is important to understand the normal elimination of 24S-OHC and the system regulating CYP39A1, a selective hepatic metabolic enzyme of 24S-OHC. We examined the role of transcriptional regulation by retinoic acid receptor-related orphan receptor α (RORα), a nuclear receptor that responds to oxysterol ligands. In humans, the promoter and first intronic regions of CYP39A1 contain two putative RORα response elements (ROREs). RORα binding and responses of these ROREs were assessed using electrophoretic mobility shift, chromatin immunoprecipitation, and luciferase reporter assays. CYP39A1 was upregulated by RORα overexpression in HEK293 cells, while RORα knockdown by siRNA significantly downregulated CYP39A1 expression in human hepatoma cells. Additionally, CYP39A1 was induced by RORα agonist treatment, suggesting that CYP39A1 expression is activated by RORα nuclear receptors. This may provide a way to increase CYP39A1 activity using RORα agonists, and help halt 24S-OHC accumulation in neurodegenerative illnesses.


Sign in / Sign up

Export Citation Format

Share Document