Characterization of the mouse transforming growth factor-beta 1 promoter and activation by the Ha-ras oncogene

1991 ◽  
Vol 11 (1) ◽  
pp. 84-92
Author(s):  
A G Geiser ◽  
S J Kim ◽  
A B Roberts ◽  
M B Sporn

We have cloned and sequenced a mouse genomic transforming growth factor beta 1 (TGF-beta 1) DNA fragment that includes the 5' untranslated and regulatory regions of the gene. High-sequence homology with the human TGF-beta 1 gene (66% nucleotide identity in 2.7 kb of DNA upstream of the translational start site) suggested evolutionary conservation of transcriptional regulation for TGF-beta 1. The absence of TATA or CAAT box sequences but the presence of several Sp1-binding and AP-2-like sequences in the promoter region was noted, as previously reported for the human gene. Two transcriptional initiation sites separated by 290 bp were identified by S1 nuclease analysis; these corresponded to transcripts with 866 and 576 nucleotides of 5' untranslated leader sequence. S1 analysis of different mouse tissues indicated that the two transcripts were present in the same ratio even though the total level of TGF-beta 1 mRNA transcripts varied between tissues. Promoter activity adjacent to both transcriptional start sites was demonstrated by using chloramphenicol acetyltransferase fusion genes assayed in mouse AKR-2B fibroblast cells. Transcriptional activation of the promoter by the Ha-ras oncogene was also demonstrated. The minimal promoter constructs (113 and 104 bp 5' of the first and second transcriptional start sites, respectively) were sufficient for induction by Ha-ras. These studies characterize the 5' structure and basal promoter activity of the mouse TGF-beta 1 gene as well as the transcriptional activation of TGF-beta 1 by the Ha-ras oncogene.

1991 ◽  
Vol 11 (1) ◽  
pp. 84-92 ◽  
Author(s):  
A G Geiser ◽  
S J Kim ◽  
A B Roberts ◽  
M B Sporn

We have cloned and sequenced a mouse genomic transforming growth factor beta 1 (TGF-beta 1) DNA fragment that includes the 5' untranslated and regulatory regions of the gene. High-sequence homology with the human TGF-beta 1 gene (66% nucleotide identity in 2.7 kb of DNA upstream of the translational start site) suggested evolutionary conservation of transcriptional regulation for TGF-beta 1. The absence of TATA or CAAT box sequences but the presence of several Sp1-binding and AP-2-like sequences in the promoter region was noted, as previously reported for the human gene. Two transcriptional initiation sites separated by 290 bp were identified by S1 nuclease analysis; these corresponded to transcripts with 866 and 576 nucleotides of 5' untranslated leader sequence. S1 analysis of different mouse tissues indicated that the two transcripts were present in the same ratio even though the total level of TGF-beta 1 mRNA transcripts varied between tissues. Promoter activity adjacent to both transcriptional start sites was demonstrated by using chloramphenicol acetyltransferase fusion genes assayed in mouse AKR-2B fibroblast cells. Transcriptional activation of the promoter by the Ha-ras oncogene was also demonstrated. The minimal promoter constructs (113 and 104 bp 5' of the first and second transcriptional start sites, respectively) were sufficient for induction by Ha-ras. These studies characterize the 5' structure and basal promoter activity of the mouse TGF-beta 1 gene as well as the transcriptional activation of TGF-beta 1 by the Ha-ras oncogene.


1990 ◽  
Vol 10 (9) ◽  
pp. 4978-4983 ◽  
Author(s):  
M C Birchenall-Roberts ◽  
F W Ruscetti ◽  
J Kasper ◽  
H D Lee ◽  
R Friedman ◽  
...  

Growth factor-independent 32D-src and 32D-abl cell lines, established by infecting the interleukin-3-dependent myeloid precursor cell line (32D-123) with retroviruses containing the src or abl oncogene, were used to study transcriptional regulation of transforming growth factor beta 1 (TGF-beta 1) mRNA. Analysis of different TGF-beta 1 promoter constructs regulated by pp60v-src indicated that sequences responsive to high levels of src induction contain binding sites for AP-1. Both src and serum induced expression of the c-fos and c-jun genes in myeloid cells, resulting in transcriptional activation of the TGF-beta 1 gene. We found that serum treatment increased TGF-beta 1 mRNA levels in 32D-123 cells and that the v-Src protein could replace the serum requirement by stimulating binding to the AP-1 complex of the TGF-beta 1 promoter, thereby mediating the induction of TGF-beta 1 transcription.


1997 ◽  
Vol 17 (12) ◽  
pp. 7019-7028 ◽  
Author(s):  
J M Yingling ◽  
M B Datto ◽  
C Wong ◽  
J P Frederick ◽  
N T Liberati ◽  
...  

Members of the Smad family of proteins are thought to play important roles in transforming growth factor beta (TGF-beta)-mediated signal transduction. In response to TGF-beta, specific Smads become inducibly phosphorylated, form heteromers with Smad4, and undergo nuclear accumulation. In addition, overexpression of specific Smad combinations can mimic the transcriptional effect of TGF-beta on both the plasminogen activator inhibitor 1 (PAI-1) promoter and the reporter construct p3TP-Lux. Although these data suggest a role for Smads in regulating transcription, the precise nuclear function of these heteromeric Smad complexes remains largely unknown. Here we show that in Mv1Lu cells Smad3 and Smad4 form a TGF-beta-induced, phosphorylation-dependent, DNA binding complex that specifically recognizes a bipartite binding site within p3TP-Lux. Furthermore, we demonstrate that Smad4 itself is a DNA binding protein which recognizes the same sequence. Interestingly, mutations which eliminate the Smad DNA binding site do not interfere with either TGF-beta-dependent transcriptional activation or activation by Smad3/Smad4 cooverexpression. In contrast, mutation of adjacent AP1 sites within this context eliminates both TGF-beta-dependent transcriptional activation and activation in response to Smad3/Smad4 cooverexpression. Furthermore, concatemerized AP1 sites, in isolation, are activated by Smad3/Smad4 cooverexpression and, to a certain extent, by TGF-beta. Taken together, these data suggest that the Smad3/Smad4 complex has at least two separable nuclear functions: it forms a rapid, yet transient sequence-specific DNA binding complex, and it potentiates AP1-dependent transcriptional activation.


1990 ◽  
Vol 10 (9) ◽  
pp. 4978-4983
Author(s):  
M C Birchenall-Roberts ◽  
F W Ruscetti ◽  
J Kasper ◽  
H D Lee ◽  
R Friedman ◽  
...  

Growth factor-independent 32D-src and 32D-abl cell lines, established by infecting the interleukin-3-dependent myeloid precursor cell line (32D-123) with retroviruses containing the src or abl oncogene, were used to study transcriptional regulation of transforming growth factor beta 1 (TGF-beta 1) mRNA. Analysis of different TGF-beta 1 promoter constructs regulated by pp60v-src indicated that sequences responsive to high levels of src induction contain binding sites for AP-1. Both src and serum induced expression of the c-fos and c-jun genes in myeloid cells, resulting in transcriptional activation of the TGF-beta 1 gene. We found that serum treatment increased TGF-beta 1 mRNA levels in 32D-123 cells and that the v-Src protein could replace the serum requirement by stimulating binding to the AP-1 complex of the TGF-beta 1 promoter, thereby mediating the induction of TGF-beta 1 transcription.


1990 ◽  
Vol 265 (2) ◽  
pp. 1089-1093 ◽  
Author(s):  
P Kondaiah ◽  
M J Sands ◽  
J M Smith ◽  
A Fields ◽  
A B Roberts ◽  
...  

1988 ◽  
Vol 8 (5) ◽  
pp. 2229-2232 ◽  
Author(s):  
A M Brunner ◽  
L E Gentry ◽  
J A Cooper ◽  
A F Purchio

Analyses of cDNA clones coding for simian type 1 transforming growth factor beta (TGF-beta 1) suggest that there are three potential sites for N-linked glycosylation located in the amino terminus of the precursor region. Analysis of [3H]glucosamine-labeled serum-free supernatants from a line of Chinese hamster ovary cells which secrete high levels of recombinant TGF-beta 1 indicate that the TGF-beta 1 precursor, but not the mature form, is glycosylated. Digestion with neuraminidase resulted in a shift in migration of the two TGF-beta 1 precursor bands, which suggests that they contain sialic acid residues. Endoglycosidase H had no noticeable effect. Treatment with N-glycanase produced two faster-migrating sharp bands, the largest of which had a molecular weight of 39 kilodaltons. TGF-beta 1-specific transcripts produced by SP6 polymerase programmed the synthesis of a 42-kilodalton polypeptide which, we suggest, is the unmodified protein backbone of the precursor. Labeling with 32Pi showed that the TGF-beta 1 precursor was phosphorylated in the amino portion of the molecule.


1991 ◽  
Vol 173 (3) ◽  
pp. 589-597 ◽  
Author(s):  
G Poli ◽  
A L Kinter ◽  
J S Justement ◽  
P Bressler ◽  
J H Kehrl ◽  
...  

The pleiotropic immunoregulatory cytokine transforming growth factor beta (TGF-beta) potently suppresses production of the human immunodeficiency virus (HIV), the causative agent of the acquired immunodeficiency syndrome, in the chronically infected promonocytic cell line U1. TGF-beta significantly (50-90%) inhibited HIV reverse transcriptase production and synthesis of viral proteins in U1 cells stimulated with phorbol myristate acetate (PMA) or interleukin 6 (IL-6). Furthermore, TGF-beta suppressed PMA induction of HIV transcription in U1 cells. In contrast, TGF-beta did not significantly affect the expression of HIV induced by tumor necrosis factor alpha (TNF-alpha). These suppressive effects were not mediated via the induction of interferon alpha (IFN-alpha). TGF-beta also suppressed HIV replication in primary monocyte-derived macrophages infected in vitro, both in the absence of exogenous cytokines and in IL-6-stimulated cultures. In contrast, no significant effects of TGF-beta were observed in either a chronically infected T cell line (ACH-2) or in primary T cell blasts infected in vitro. Therefore, TGF-beta may play a potentially important role as a negative regulator of HIV expression in infected monocytes or tissue macrophages in infected individuals.


1991 ◽  
Vol 11 (10) ◽  
pp. 4952-4958
Author(s):  
A Zentella ◽  
F M Weis ◽  
D A Ralph ◽  
M Laiho ◽  
J Massagué

The growth-suppressive function of the retinoblastoma susceptibility gene product, RB, has been implicated in the mediation of growth inhibition and negative regulation of certain proliferation related genes by transforming growth factor-beta 1 (TGF-beta 1). Early gene responses to TGF-beta 1 were examined in order to determine their dependence on the cell cycle and on the growth-suppressive function of RB. TGF-beta 1, which rapidly elevates the steady-state level of junB and PAI-1 mRNAs and decreases that of c-myc mRNA, induces these responses in S-phase populations of Mv1Lu lung epithelial cells containing RB in a phosphorylated state. Since in this state RB is presumed to lack growth-suppressive activity, the response to TGF-beta 1 was also examined in DU145 human prostate carcinoma cells whose mutant RB product lacks growth-suppressive function. In these cells, TGF-beta 1 also decreases c-myc expression at the transcription initiation level. These results suggests that the c-myc, junB, and PAI-1 responses to TGF-beta 1 are not restricted to the G1 phase of the cell cycle and that down-regulation of c-myc expression by TGF-beta 1 can occur through a mechanism independent from the growth-suppressive function of RB.


1988 ◽  
Vol 91 (2) ◽  
pp. 313-318
Author(s):  
T. Lombardi ◽  
R. Montesano ◽  
M.B. Furie ◽  
S.C. Silverstein ◽  
L. Orci

Cultured endothelial cells isolated from fenestrated capillaries express many properties characteristic of their in vivo differentiated phenotype, including the formation of a limited number of fenestrae. In this study, we have investigated whether physiological factors that control cell differentiation might regulate the surface density of fenestrae in capillary endothelial cells. We have found that treatment of the cultures with retinoic acid (10 microM) induces a more than threefold increase in the surface density of endothelial fenestrae, whereas transforming growth factor beta (TGF beta) (2 ng ml-1) causes a sevenfold decrease in the surface density of these structures. These results show that the expression of endothelial fenestrae is susceptible to bidirectional modulation by physiological signals, and suggest that retinoids and TGF beta may participate in the regulation of fenestral density of capillary endothelium in vivo.


Sign in / Sign up

Export Citation Format

Share Document