scholarly journals Overexpression of transforming growth factor-beta in transgenic mice carrying the human T-cell lymphotropic virus type I tax gene.

1991 ◽  
Vol 11 (10) ◽  
pp. 5222-5228 ◽  
Author(s):  
S J Kim ◽  
T S Winokur ◽  
H D Lee ◽  
D Danielpour ◽  
K Y Kim ◽  
...  

Human T-cell lymphotropic virus type I (HTLV-I) has been associated with an adult form of T-cell leukemia as well as tropical spastic paraparesis, a neurodegenerative disease. Adult T-cell leukemia patients express high levels of the type 1 isoform of transforming growth factor-beta (TGF-beta 1), which is mediated by the effects of the HTLV-I Tax transactivator protein on the TGF-beta 1 promoter. To understand further the regulation of TGF-beta 1 expression by Tax, we examined its expression in transgenic mice carrying the HTLV-I tax gene. We show that tumors from these mice and other tissues, such as submaxillary glands and skeletal muscle, which express high levels of tax mRNA selectively express high levels of TGF-beta 1 mRNA and protein. Moreover, TGF-beta 1 significantly stimulated the incorporation of tritiated thymidine into one of three cell lines derived from neurofibromas of tax-transgenic mice, which suggests that the excessive production of TGF-beta 1 may play a role in tumorigenesis and that these mice may serve as a useful model for studying the biological effects of TGF-beta in vivo.

1991 ◽  
Vol 11 (10) ◽  
pp. 5222-5228
Author(s):  
S J Kim ◽  
T S Winokur ◽  
H D Lee ◽  
D Danielpour ◽  
K Y Kim ◽  
...  

Human T-cell lymphotropic virus type I (HTLV-I) has been associated with an adult form of T-cell leukemia as well as tropical spastic paraparesis, a neurodegenerative disease. Adult T-cell leukemia patients express high levels of the type 1 isoform of transforming growth factor-beta (TGF-beta 1), which is mediated by the effects of the HTLV-I Tax transactivator protein on the TGF-beta 1 promoter. To understand further the regulation of TGF-beta 1 expression by Tax, we examined its expression in transgenic mice carrying the HTLV-I tax gene. We show that tumors from these mice and other tissues, such as submaxillary glands and skeletal muscle, which express high levels of tax mRNA selectively express high levels of TGF-beta 1 mRNA and protein. Moreover, TGF-beta 1 significantly stimulated the incorporation of tritiated thymidine into one of three cell lines derived from neurofibromas of tax-transgenic mice, which suggests that the excessive production of TGF-beta 1 may play a role in tumorigenesis and that these mice may serve as a useful model for studying the biological effects of TGF-beta in vivo.


1990 ◽  
Vol 172 (1) ◽  
pp. 121-129 ◽  
Author(s):  
S J Kim ◽  
J H Kehrl ◽  
J Burton ◽  
C L Tendler ◽  
K T Jeang ◽  
...  

We examined the effect of the human T lymphotropic virus type 1 (HTLV-I) Tax gene product on the human transforming growth factor beta 1 (TGF-beta 1) promoter. Transfection of deleted constructs of the TGF-beta 1 promoter revealed regions homologous with AP-1 binding sites that were required for Tax-induced transactivation of the TGF-beta 1 promoter. In addition, we examined the expression and secretion of TGF-beta in fresh leukemic cells isolated from patients with adult T cell leukemia (ATL) and in HTLV-1-infected T cell lines. We report that fresh leukemic cells from ATL patients constitutively produce high levels of TGF-beta 1 mRNA and secrete TGF-beta 1 but not TGF-beta 2 into the culture medium. In addition, long-term ATL cell lines expressed significant amounts of TGF-beta 1 mRNA as well as detectable levels of TGF-beta 1 protein. These results suggest a role for Tax in the upregulation of TGF-beta 1 in HTLV-I-infected cells.


1991 ◽  
Vol 173 (3) ◽  
pp. 589-597 ◽  
Author(s):  
G Poli ◽  
A L Kinter ◽  
J S Justement ◽  
P Bressler ◽  
J H Kehrl ◽  
...  

The pleiotropic immunoregulatory cytokine transforming growth factor beta (TGF-beta) potently suppresses production of the human immunodeficiency virus (HIV), the causative agent of the acquired immunodeficiency syndrome, in the chronically infected promonocytic cell line U1. TGF-beta significantly (50-90%) inhibited HIV reverse transcriptase production and synthesis of viral proteins in U1 cells stimulated with phorbol myristate acetate (PMA) or interleukin 6 (IL-6). Furthermore, TGF-beta suppressed PMA induction of HIV transcription in U1 cells. In contrast, TGF-beta did not significantly affect the expression of HIV induced by tumor necrosis factor alpha (TNF-alpha). These suppressive effects were not mediated via the induction of interferon alpha (IFN-alpha). TGF-beta also suppressed HIV replication in primary monocyte-derived macrophages infected in vitro, both in the absence of exogenous cytokines and in IL-6-stimulated cultures. In contrast, no significant effects of TGF-beta were observed in either a chronically infected T cell line (ACH-2) or in primary T cell blasts infected in vitro. Therefore, TGF-beta may play a potentially important role as a negative regulator of HIV expression in infected monocytes or tissue macrophages in infected individuals.


1991 ◽  
Vol 11 (10) ◽  
pp. 5338-5345
Author(s):  
B Kallin ◽  
R de Martin ◽  
T Etzold ◽  
V Sorrentino ◽  
L Philipson

By cDNA cloning and differential screening, five genes that are regulated by transforming growth factor beta (TGF beta) in mink lung epithelial cells were identified. A novel membrane protein gene, TI 1, was identified which was downregulated by TGF beta and serum in quiescent cells. In actively growing cells, the TI 1 gene is rapidly and transiently induced by TGF beta, and it is overexpressed in the presence of protein synthesis inhibitors. It appears to be related to a family of transmembrane glycoproteins that are expressed on lymphocytes and tumor cells. The four other genes were all induced by TGF beta and correspond to the genes of collagen alpha type I, fibronectin, plasminogen activator inhibitor 1, and the monocyte chemotactic cell-activating factor (JE gene) previously shown to be TGF beta regulated.


1987 ◽  
Vol 165 (1) ◽  
pp. 251-256 ◽  
Author(s):  
A E Postlethwaite ◽  
J Keski-Oja ◽  
H L Moses ◽  
A H Kang

Transforming growth factor beta (TGF-beta) is a potent chemoattractant in vitro for human dermal fibroblasts. Intact disulfide and perhaps the dimeric structure of TGF-beta is essential for its ability to stimulate chemotactic migration of fibroblasts, since reduction with 2-ME results in a marked loss of its potency as a chemoattractant. Although epidermal growth factor (EGF) appears to be capable of modulating some effects of TGF-beta, it does not alter the chemotactic response of fibroblasts to TGF-beta. Specific polyvalent rabbit antibodies to homogeneously pure TGF-beta block its chemotactic activity but has no effect on the other chemoattractants tested (platelet-derived growth factor, fibronectin, and denatured type I collagen). Since TGF-beta is secreted by a variety of neoplastic and normal cells including platelets, monocytes/macrophages, and lymphocytes, it may play a critical role in vivo in embryogenesis, host response to tumors, and the repair response that follows damage to tissues by immune and nonimmune reactions.


1990 ◽  
Vol 110 (6) ◽  
pp. 2209-2219 ◽  
Author(s):  
G B Silberstein ◽  
P Strickland ◽  
S Coleman ◽  
C W Daniel

Exogenous transforming growth factor beta (TGF-beta 1) was shown in earlier studies to reversibly inhibit mouse mammary ductal growth. Using small plastic implants to treat regions of developing mammary glands in situ, we now report that TGF-beta 1 growth inhibition is associated with an ectopic accumulation of type I collagen messenger RNA and protein, as well as the glycosaminoglycan, chondroitin sulfate. Both macromolecules are normal components of the ductal extracellular matrix, which, under the influence of exogenous TGF-beta 1, became unusually concentrated immediately adjacent to the epithelial cells at the tip of the ductal growth points, the end buds. Stimulation of extracellular matrix was confined to aggregations of connective tissue cells around affected end buds and was not present around the TGF-beta 1 implants themselves, indicating that the matrix effect was epithelium dependent. Ectopic matrix synthesis was specific for TGF-beta 1 insofar as it was absent at ducts treated with other growth inhibitors, or at ducts undergoing normal involution in response to endogenous regulatory processes. These findings are consistent with the matrix-stimulating properties of TGF-beta 1 reported for other systems, but differ in their strict dependence upon epithelium. A possible role for endogenous TGF-beta 1 in modulating a mammary epithelium-stroma interaction is suggested.


1993 ◽  
Vol 178 (3) ◽  
pp. 841-852 ◽  
Author(s):  
R M Stach ◽  
D A Rowley

Fresh sera from mice immunized by bearing an immunogenic tumor or by repeated injections of allogeneic spleen cells or xenogeneic erythrocytes powerfully suppress cytolytic T cell responses in one-way mixed lymphocyte cultures. Suppression is not antigen specific, though is mediated by immunoglobulin (Ig)G specific for the immunizing antigen. Suppression caused by IgG mimics that caused by active transforming growth factor beta (TGF-beta). IgG associates with or carries latent TGF-beta; however, suppression caused by the complex of IgG-TGF-beta requires macrophages (M phi), whereas active TGF-beta alone does not. Also, IgG dissociated from TGF-beta does not cause suppression, suggesting that M phi may take up Ig-TGF-beta, process the complex, and deliver active TGF-beta to lymphocytes. Indeed, suppression by immune serum was prevented by antibody to Fc receptors, by saturating Fc receptors with heterologous IgGs, and by antibodies against TGF-beta. The overall findings reveal a previously unrecognized regulatory circuit whereby IgG produced in response to one antigen nonspecifically downregulates cytolytic T lymphocyte responses to unrelated antigens. The findings introduce the intriguing possibility that TGF-beta delivered by IgG and processed by M phi may mediate important biological effects in processes such as wound healing, tumor growth, and some autoimmune diseases.


Sign in / Sign up

Export Citation Format

Share Document