scholarly journals Genomewide analysis of circular RNA in pituitaries of normal and heat-stressed sows

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Haojie Zhang ◽  
Baoyu Hu ◽  
Jiali Xiong ◽  
Ting Chen ◽  
Qianyun Xi ◽  
...  

Abstract Background As a newly characterized type of noncoding RNA, circular RNA (circRNA) has been shown to have functions in diverse biological processes of animals. It has been reported that several noncoding RNAs may regulate animals’ response to heat stress which can be easily induced by hyperthermia in summer. However, the expression and functions of circRNAs in the pituitary of sows and whether they participate in heat stress adaption are still unclear. Results In this study, we found that high temperature over the thermoneutral zone of sows during the summer increased the serum heat shock protein 70 (HSP70) level, decreased the superoxide dismutase (SOD) vitality and prolactin (PRL) concentration, and induced heat stress in sows. Then, we explored circRNA in the pituitary of heat-stressed and normal sows using RNA sequencing and bioinformatics analysis. In total, 12,035 circRNAs were detected, with 59 circRNAs differentially expressed, including 42 up-regulated and 17 down-regulated circRNAs in pituitaries of the heat-stressed sows. Six randomly selected circRNAs were identified through reverse transcription PCR followed by DNA sequencing and other 7 randomly selected differentially expressed circRNAs were verified by quantitative real-time PCR analysis. The predicted target genes regulated by circRNAs through sponging microRNAs (miRNAs) were enriched in metabolic pathway. Furthermore, the predicted circRNA–miRNA–mRNA interactions showed that some circRNAs might sponge miRNAs to regulate pituitary-specific genes and heat shock protein family members, indicating circRNA’s roles in pituitary hormone secretion and heat stress response. Conclusions Our results provided a meaningful reference to understand the functions of circRNA in the porcine pituitary and the mechanisms by which circRNA may participate in animals’ response to heat stress.

Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1015 ◽  
Author(s):  
Shuangming Yue ◽  
Zhisheng Wang ◽  
Lizhi Wang ◽  
Quanhui Peng ◽  
Bai Xue

Heat stress (HS) exerts significant effects on the production of dairy animals through impairing health and biological functions. However, the molecular mechanisms related to the effect of HS on dairy cow milk production are still largely unknown. The present study employed an RNA-sequencing approach to explore the molecular mechanisms associated with a decline in milk production by the functional analysis of differentially expressed genes (DEGs) in mammary glands of cows exposed to HS and non-heat-stressed cows. The results of the current study reveal that HS increases the rectal temperature and respiratory rate. Cows under HS result in decreased bodyweight, dry matter intake (DMI), and milk yield. In the current study, a total of 213 genes in experimental cow mammary glands was identified as being differentially expressed by DEGs analysis. Among identified genes, 89 were upregulated, and 124 were downregulated. Gene Ontology functional analysis found that biological processes, such as immune response, chaperone-dependent refolding of protein, and heat shock protein binding activity, were notably affected by HS. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis found that almost all of the top-affected pathways were related to immune response. Under HS, the expression of heat shock protein 90 kDa beta I (HSP90B1) and heat shock 70 kDa protein 1A was upregulated, while the expression of bovine lymphocyte antigen (BoLA) and histocompatibility complex, class II, DRB3 (BoLA-DRB3) was downregulated. We further explored the effects of HS on lactation-related genes and pathways and found that HS significantly downregulated the casein genes. Furthermore, HS increased the expression of phosphorylation of mammalian target of rapamycin, cytosolic arginine sensor for mTORC1 subunit 2 (CASTOR2), and cytosolic arginine sensor for mTORC1 subunit 1 (CASTOR1), but decreased the phosphorylation of Janus kinase-2, a signal transducer and activator of transcription factor-5. Based on the findings of DMI, milk yield, casein gene expression, and the genes and pathways identified by functional annotation analysis, it is concluded that HS adversely affects the immune function of dairy cows. These results will be beneficial to understand the underlying mechanism of reduced milk yield in HS cows.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Qi Yan ◽  
Xifang Zong ◽  
Fan Wu ◽  
Jie Li ◽  
Tiantian Ma ◽  
...  

Abstract Background As global warming continues, heat stress (HS) is becoming an increasingly significant factor limiting plant growth and reproduction, especially for cool-season grass species. The objective of this study was to determine the transcriptional regulatory network of Cleistogenes songorica under HS via transcriptome profiling, identify of gene families and comparative analysis across major Poaceae species. Results Physiological analysis revealed significantly decreased leaf relative water content (RWC) but increased proline (Pro) content in C. songorica under 24 h of HS. Transcriptome profiling indicated that 16,028 and 14,645 genes were differentially expressed in the shoots and roots of C. songorica under HS, respectively. Two subgenomes of C. songorica provide equal contribution under HS on the basis of the distribution and expression of differentially expressed genes (DEGs). Furthermore, 216 DEGs were identified as key evolutionarily conserved genes involved in the response to HS in C. songorica via comparative analysis with genes of four Poaceae species; these genes were involved in the ‘response to heat’ and ‘heat acclimation’. Notably, most of the conserved DEGs belonged to the heat-shock protein (HSP) superfamily. Similar results were also obtained from co-expression analysis. Interestingly, hub-genes of co-expression analysis were found to overlap with conserved genes, especially heat-shock protein (HSP). In C. songorica, 84 HSP and 32 heat-shock transcription factor (HSF) genes were identified in the allotetraploid C. songorica genome, and might have undergone purifying selection during evolutionary history based on syntenic and phylogenetic analysis. By analysing the expression patterns of the CsHSPs and CsHSFs, we found that the transcript abundance of 72.7% of the CsHSP genes and of 62.5% of the CsHSF genes changed under heat stress in both the shoots and roots. Finally, a core regulatory network of HS was constructed on the basis of the CsHSP, CsHSF and other responsive genes in C. songorica. Conclusions Regulatory network and key genes were comprehensively analysed and identified in C. songorica under HS. This study improves our knowledge of thermotolerance mechanisms in native grasses, and also provides candidate genes for potential applications in the genetic improvement of grasses.


Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 312
Author(s):  
Yeeun Kang ◽  
Suk-Woo Jang ◽  
Hee Ju Lee ◽  
Derek W. Barchenger ◽  
Seonghoe Jang

High temperatures due to global warming can cause harmful effects on the productivity of lettuce, a cool-season crop. To identify lettuce heat shock protein (HSP) genes that could be involved in early responses to heat stress in plants, we compared RNA transcriptomes between lettuce plants with and without heat treatment of 37 °C for 1 h. Using transcriptome sequencing analyses, a total of 7986 differentially expressed genes (DEGs) were identified including the top five, LsHSP70A, LsHSP70B, LsHSP17.3A, LsHSP17.9A and LsHSP17.9B, which were the most highly differentially expressed genes. In order to investigate the temporal expression patterns of 24 lettuce HSP genes with a fold-change greater than 100 under heat stress, the expression levels of the genes were measured by qRT-PCR at 0, 1, 4, 8, 14, and 24 h time points after heat treatment. The 24 LsHSP genes were classified into three groups based on the phylogenetic analysis and/or major domains available in each protein, and we provided a potential link between the phylogenetic relationships and expression patterns of the LsHSP genes. Our results showed putative early heat-responsive lettuce HSP genes that could be possible candidates as breeding guides for the development of heat-tolerant lettuce cultivars.


1991 ◽  
Vol 11 (5) ◽  
pp. 2905-2908 ◽  
Author(s):  
W R Widner ◽  
Y Matsumoto ◽  
R B Wickner

The 20S RNA of Saccharomyces cerevisiae is a single-stranded, circular RNA virus. A previous study suggested that this RNA is part of a 32S ribonucleoprotein particle, being associated with multiple copies of a 23-kilodalton protein. We show here that this protein is, in fact, the chromosome-encoded heat shock protein Hsp26. Furthermore, it is apparently not associated with 20S RNA and plays no obvious role in the life cycle of the virus.


2014 ◽  
Vol 87 (5) ◽  
pp. 652-662 ◽  
Author(s):  
Ashra Kolhatkar ◽  
Cayleih E. Robertson ◽  
Maria E. Thistle ◽  
A. Kurt Gamperl ◽  
Suzanne Currie

2018 ◽  
Vol 50 (5) ◽  
pp. 1903-1915 ◽  
Author(s):  
Qianlin Xia ◽  
Tao Ding ◽  
Guihong Zhang ◽  
Zehuan Li ◽  
Ling Zeng ◽  
...  

Background/Aims: Prostate cancer (PCa) is one of the main cancers that damage males’ health severely with high morbidity and mortality, but there is still no ideal molecular marker for the diagnosis and prognosis of prostate cancer. Methods: To determine whether the differentially expressed circRNAs in prostate cancer can serve as novel biomarkers for prostate cancer diagnosis, we screened differentially expressed circRNAs using SBC-ceRNA array in 4 pairs of prostate tumor and paracancerous tissues. A circRNA-miRNA-mRNA regulatory network for the differential circRNAs and their host genes was constructed by Cytoscape3.5.1 software. Quantitative real-time polymerase chain reaction analysis (qRT-PCR) was performed to confirm the microarray data. Results: We found 1021 differentially expressed circRNAs in PCa tumor using SBC-ceRNA array and confirmed the expression of circ_0057558, circ_0062019 and SLC19A1 in PCa cell lines and tumor tissues through qRT-PCR analysis. We demonstrated that combination of PSA level and two differentially expressed circRNAs showed significantly increased AUC, sensitivity and specificity (0.938, 84.5% and 90.9%, respectively) than PSA alone (AUC of serum PSA was 0.854). Moreover, circ_0057558 was correlated positively with total cholesterol. The functional network of circRNA-miRNA-mRNA analysis showed that circ_0057558 and circ_0034467 regulated miR-6884, and circ_0062019 and circ_0060325 regulated miR-5008. Conclusion: Our results demonstrated that differentially expressed circRNAs (circ_0062019 and circ_0057558) and host gene SLC19A1 of circ_0062019 could be used as potential novel biomarkers for prostate cancer.


2004 ◽  
Vol 82 ◽  
pp. S181
Author(s):  
S. Lima ◽  
A. Cedenho ◽  
P. Hassun ◽  
R. Bertolla ◽  
S. Oehninger ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Santhilal Subhash ◽  
Norman Kalmbach ◽  
Florian Wegner ◽  
Susanne Petri ◽  
Torsten Glomb ◽  
...  

AbstractCerebral cavernous malformations (CCMs) are low-flow vascular malformations in the brain associated with recurrent hemorrhage and seizures. The current treatment of CCMs relies solely on surgical intervention. Henceforth, alternative non-invasive therapies are urgently needed to help prevent subsequent hemorrhagic episodes. Long non-coding RNAs (lncRNAs) belong to the class of non-coding RNAs and are known to regulate gene transcription and involved in chromatin remodeling via various mechanism. Despite accumulating evidence demonstrating the role of lncRNAs in cerebrovascular disorders, their identification in CCMs pathology remains unknown. The objective of the current study was to identify lncRNAs associated with CCMs pathogenesis using patient cohorts having 10 CCM patients and 4 controls from brain. Executing next generation sequencing, we performed whole transcriptome sequencing (RNA-seq) analysis and identified 1,967 lncRNAs and 4,928 protein coding genes (PCGs) to be differentially expressed in CCMs patients. Among these, we selected top 6 differentially expressed lncRNAs each having significant correlative expression with more than 100 differentially expressed PCGs. The differential expression status of the top lncRNAs, SMIM25 and LBX2-AS1 in CCMs was further confirmed by qRT-PCR analysis. Additionally, gene set enrichment analysis of correlated PCGs revealed critical pathways related to vascular signaling and important biological processes relevant to CCMs pathophysiology. Here, by transcriptome-wide approach we demonstrate that lncRNAs are prevalent in CCMs disease and are likely to play critical roles in regulating important signaling pathways involved in the disease progression. We believe, that detailed future investigations on this set of identified lncRNAs can provide useful insights into the biology and, ultimately, contribute in preventing this debilitating disease.


Sign in / Sign up

Export Citation Format

Share Document