scholarly journals Ecdysterone receptor is a sequence-specific transcription factor involved in the developmental regulation of heat shock genes.

1991 ◽  
Vol 11 (7) ◽  
pp. 3660-3675 ◽  
Author(s):  
Y Luo ◽  
J Amin ◽  
R Voellmy

Purification of ecdysterone receptor from Drosophila melanogaster to apparent homogeneity is reported. Purified receptor binds specifically to several sequences in the promoters of the developmentally active hsp27 and hsp23 heat shock genes that were previously implied in ecdysterone regulation of the genes and that share limited homology among themselves and with mammalian steroid receptor binding sites. Some of these elements confer ecdysterone regulation on a basal promoter in transfected cells, acting in a synergistic fashion. Transcription in vitro of promoters containing such elements is stimulated up to 100-fold by added purified ecdysterone receptor, depending on receptor dosage and the number of elements present. Transcriptional enhancement requires sequence-specific binding of receptor to template promoters which facilitates the formation of a preinitiation complex. Ecdysterone stimulates DNA binding of the receptor in vitro.

1991 ◽  
Vol 11 (7) ◽  
pp. 3660-3675
Author(s):  
Y Luo ◽  
J Amin ◽  
R Voellmy

Purification of ecdysterone receptor from Drosophila melanogaster to apparent homogeneity is reported. Purified receptor binds specifically to several sequences in the promoters of the developmentally active hsp27 and hsp23 heat shock genes that were previously implied in ecdysterone regulation of the genes and that share limited homology among themselves and with mammalian steroid receptor binding sites. Some of these elements confer ecdysterone regulation on a basal promoter in transfected cells, acting in a synergistic fashion. Transcription in vitro of promoters containing such elements is stimulated up to 100-fold by added purified ecdysterone receptor, depending on receptor dosage and the number of elements present. Transcriptional enhancement requires sequence-specific binding of receptor to template promoters which facilitates the formation of a preinitiation complex. Ecdysterone stimulates DNA binding of the receptor in vitro.


1989 ◽  
Vol 264 (31) ◽  
pp. 18707-18713 ◽  
Author(s):  
K Matsuno ◽  
C C Hui ◽  
S Takiya ◽  
T Suzuki ◽  
K Ueno ◽  
...  

1992 ◽  
Vol 23 (4) ◽  
pp. 891-897 ◽  
Author(s):  
Amato J. Giaccia ◽  
Elizabeth A. Auger ◽  
Albert Koong ◽  
David J. Terris ◽  
Andrew I. Minchinton ◽  
...  

1991 ◽  
Vol 11 (7) ◽  
pp. 3504-3514
Author(s):  
N F Cunniff ◽  
J Wagner ◽  
W D Morgan

We investigated the recognition of the conserved 5-bp repeated motif NGAAN, which occurs in heat shock gene promoters of Drosophila melanogaster and other eukaryotic organisms, by human heat shock transcription factor (HSF). Extended heat shock element mutants of the human HSP70 gene promoter, containing additional NGAAN blocks flanking the original element, showed significantly higher affinity than the wild-type promoter element for human HSF in vitro. Protein-DNA contact positions were identified by hydroxyl radical protection, diethyl pyrocarbonate interference, and DNase I footprinting. New contacts in the mutant HSE constructs corresponded to the locations of additional NGAAN motifs. The pattern of binding indicated the occurrence of multiple DNA binding modes for HSF with the various constructs and was consistent with an oligomeric, possibly trimeric, structure of the protein. In contrast to the improved binding, the extended heat shock element mutant constructs did not exhibit dramatically increased heat-inducible transcription in transient expression assays with HeLa cells.


1992 ◽  
Vol 12 (1) ◽  
pp. 30-37
Author(s):  
M T Killeen ◽  
J F Greenblatt

RAP30/74 is a human general transcription factor that binds to RNA polymerase II and is required for initiation of transcription in vitro regardless of whether the promoter has a recognizable TATA box (Z. F. Burton, M. Killeen, M. Sopta, L. G. Ortolan, and J. F. Greenblatt, Mol. Cell. Biol. 8:1602-1613, 1988). Part of the amino acid sequence of RAP30, the small subunit of RAP30/74, has limited homology with part of Escherichia coli sigma 70 (M. Sopta, Z. F. Burton, and J. Greenblatt, Nature (London) 341:410-414, 1989). To determine which sigmalike activities of RAP30/74 could be attributed to RAP30, we purified human RAP30 and a RAP30-glutathione-S-transferase fusion protein that had been produced in E. coli. Bacterially produced RAP30 bound to RNA polymerase II in the absence of RAP74. Both partially purified natural RAP30/74 and recombinant RAP30 prevented RNA polymerase II from binding nonspecifically to DNA. In addition, nonspecific transcription by RNA polymerase II was greatly inhibited by RAP30-glutathione-S-transferase. DNA-bound RNA polymerase II could be removed from DNA by partially purified RAP30/74 but not by bacterially expressed RAP30. Thus, the ability of RAP30/74 to recruit RNA polymerase II to a promoter-bound preinitiation complex may be an indirect consequence of its ability to suppress nonspecific binding of RNA polymerase II to DNA.


2018 ◽  
Vol 39 (3) ◽  
Author(s):  
Kyle T. Helzer ◽  
Mary Szatkowski Ozers ◽  
Mark B. Meyer ◽  
Nancy A. Benkusky ◽  
Natalia Solodin ◽  
...  

ABSTRACT Posttranslational modifications are key regulators of protein function, providing cues that can alter protein interactions and cellular location. Phosphorylation of estrogen receptor α (ER) at serine 118 (pS118-ER) occurs in response to multiple stimuli and is involved in modulating ER-dependent gene transcription. While the cistrome of ER is well established, surprisingly little is understood about how phosphorylation impacts ER-DNA binding activity. To define the pS118-ER cistrome, chromatin immunoprecipitation sequencing was performed on pS118-ER and ER in MCF-7 cells treated with estrogen. pS118-ER occupied a subset of ER binding sites which were associated with an active enhancer mark, acetylated H3K27. Unlike ER, pS118-ER sites were enriched in GRHL2 DNA binding motifs, and estrogen treatment increased GRHL2 recruitment to sites occupied by pS118-ER. Additionally, pS118-ER occupancy sites showed greater enrichment of full-length estrogen response elements relative to ER sites. In an in vitro DNA binding array of genomic binding sites, pS118-ER was more commonly associated with direct DNA binding events than indirect binding events. These results indicate that phosphorylation of ER at serine 118 promotes direct DNA binding at active enhancers and is a distinguishing mark for associated transcription factor complexes on chromatin.


Author(s):  
Laetitia Poidevin ◽  
Javier Forment ◽  
Dilek Unal ◽  
Alejandro Ferrando

ABSTRACTPlant reproduction is one key biological process very sensitive to heat stress and, as a consequence, enhanced global warming poses serious threats to food security worldwide. In this work we have used a high-resolution ribosome profiling technology to study how heat affects both the transcriptome and the translatome of Arabidopsis thaliana pollen germinated in vitro. Overall, a high correlation between transcriptional and translational responses to high temperature was found, but specific regulations at the translational level were also present. We show that bona fide heat shock genes are induced by high temperature indicating that in vitro germinated pollen is a suitable system to understand the molecular basis of heat responses. Concurrently heat induced significant down-regulation of key membrane transporters required for pollen tube growth, thus uncovering heat-sensitive targets. We also found that a large subset of the heat-repressed transporters is specifically up-regulated, in a coordinated manner, with canonical heat-shock genes in pollen tubes grown in vitro and semi in vivo, based on published transcriptomes from Arabidopsis thaliana. Ribosome footprints were also detected in gene sequences annotated as non-coding, highlighting the potential for novel translatable genes and translational dynamics.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2898-2898
Author(s):  
Michael R McKeown ◽  
Christopher Fiore ◽  
Emily Lee ◽  
Matthew L Eaton ◽  
Christian C. Fritz

Abstract SY-1425, a potent and selective agonist of the retinoic acid receptor RARα, is being investigated in a Ph2 trial in a novel genomically-defined subset of non-APL AML and MDS patients (clinicaltrials.gov NCT02807558). RARa is a nuclear hormone receptor and transcription factor that regulates genes involved in cell differentiation and proliferation. We identified a super-enhancer (SE) at the RARA locus, the gene encoding RARa, in a subset of primary non-APL AML blasts. Preclinical models demonstrated a correlation between the presence of a RARA SE and sensitivity to SY-1425, providing the rationale for clinical investigation. Further research has investigated pharmacodynamics (PD) markers and combinations of drugs to support clinical development of SY-1425. In this study we identified DHRS3mRNA induction as a measure of RARα target engagement with SY-1425. We also demonstrated synergy in preclinical models with SY-1425 and hypomethylating agents. Since RARα is a transcription factor that regulates target genes when bound by a retinoid, we characterized the dynamic expression changes of a panel of RARA enhancer- high and - low non-APL AML cell lines (hereafter referred to as RARA-high and -low) in response to SY-1425 treatment. DHRS3 showed the largest expression increase following treatment in 3 RARA-high cell lines, with a range of 29 to 115 fold. In contrast, there was a much lower DHRS3 induction in 3 RARA-low cell lines (range of 1.6 to 6.1 fold). Induction was found to be both time- and dose-dependent with maximal induction at approximately 6 hours and half maximal induction near the EC50 for the anti-proliferative effect in RARA-high cell lines. DHRS3 encodes dehydrogenase/reductase (SDR family) member 3, a metabolic enzyme involved in maintaining cellular retinol homeostasis and had previously been shown to be induced by retinoids. Thus, DHRS3induction in tumor cells represents a potentially useful PD marker for clinical studies of SY-1425. To better understand the mechanism of induction of DHRS3 by SY-1425 we examined the chromosomal localization of RARα as well as the epigenomic state of the DHRS3 locus by ChIP-seq for RARα and H3K27 acetylation, the latter being an indicator of active enhancers and promoters. In the untreated state, OCI-AML3 (a typical RARA-high AML cell line) was found to have multiple RARα binding sites both within and distal to the DHRS3 gene but minimal H3K27 acetylation. Following treatment with SY-1425, the level of H3K27 acetylation at DHRS3 increased, resulting in the formation of a SE. Moreover, the SE encompassed the RARα binding sites, consistent with the model in which SY-1425 converts RARα into an activator of DHRS3expression. Similar results were seen for the CD38 locus in which SY-1425 treatment increased expression, H3K27 acetylation, and RARα binding. CD38 is a cell surface antigen and marker of myeloid maturation readily analyzed by FACS analysis, suggesting it could be an additional PD marker to be used in clinical studies. Indeed, it was found that SY-1425 induced CD38 cell surface expression at similar levels in RARA-high AML cell lines and the NB-4 APL cell line, but not in RARA-low cell lines. We also investigated combinations of SY-1425 with approved or investigational AML and MDS agents in in vitro and in vivo models to inform future clinical studies and to further explore potential PD markers unique to the combined action of the drugs. Several standard of care agents and drugs in current development were found to have synergistic interactions with SY-1425 in RARA-high but not RARA-low cell lines. In particular, azacitidine and decitabine each showed strong in vitro synergy with SY-1425. Evaluation of SY-1425 plus azacitidine in a RARA-high PDX model of non-APL AML demonstrated a better response compared to either agent alone. Additional genome-wide ChIP-seq and expression studies of RARA-high cells treated with various combinations are being investigated to identify optimal PD markers for these combinations. These studies support the use of DHRS3 mRNA induction in tumor cells as a PD marker in the recently initiated Ph2 study of SY-1425 in genomically-defined non-APL AML and MDS patients (clinicaltrials.gov NCT02807558) and further exploration as a PD marker for future combination studies. Disclosures McKeown: Syros Pharmaceuticals: Employment, Equity Ownership. Fiore:Syros Pharmaceuticals: Employment, Equity Ownership. Lee:Syros Pharmaceuticals: Employment, Equity Ownership. Eaton:Syros Pharmaceuticals: Employment, Equity Ownership. Fritz:Syros Pharmaceuticals: Employment, Equity Ownership.


Zebra fish has long been considered to be as a strong animal model in biology and modern genetics; however now a days its gaining lot of importance in environmental studies as well. The readily availability of entire genome sequences made to permit carrying out in silico studies at Genomic level. As everyone is known that stress is much more complex and complicated process that involves so much of gene regulations known as up regulation and down regulation, the corresponding stress proteins, broadly known as heat shock proteins. In the current study, the potential transcription factor binding sites were traced out by using bioinformatics tools and about 50 heat shock protein genes were predicted by using special alogorithms using pattern matching and position weight matrices. The 3D structure of DNA-binding domain of HSTF-1 ( Heat Shock Transcription factor-1) which is crucial for regulating heat shot proteins was traced out and builted by using homology modelling methods. The 3D structure of the heat shock transcription factor-1 and together with predicted transcription factor binding sites may be validated in future experimental works which would help us in understanding the complex responsive stress mechanisms lying in Zebra fish.


2000 ◽  
Vol 11 (7) ◽  
pp. 2335-2347 ◽  
Author(s):  
Desmond C. Raitt ◽  
Anthony L. Johnson ◽  
Alexander M. Erkine ◽  
Kozo Makino ◽  
Brian Morgan ◽  
...  

The Skn7 response regulator has previously been shown to play a role in the induction of stress-responsive genes in yeast, e.g., in the induction of the thioredoxin gene in response to hydrogen peroxide. The yeast Heat Shock Factor, Hsf1, is central to the induction of another set of stress-inducible genes, namely the heat shock genes. These two regulatory trans-activators, Hsf1 and Skn7, share certain structural homologies, particularly in their DNA-binding domains and the presence of adjacent regions of coiled-coil structure, which are known to mediate protein–protein interactions. Here, we provide evidence that Hsf1 and Skn7 interact in vitro and in vivo and we show that Skn7 can bind to the same regulatory sequences as Hsf1, namely heat shock elements. Furthermore, we demonstrate that a strain deleted for the SKN7 gene and containing a temperature-sensitive mutation in Hsf1 is hypersensitive to oxidative stress. Our data suggest that Skn7 and Hsf1 cooperate to achieve maximal induction of heat shock genes in response specifically to oxidative stress. We further show that, like Hsf1, Skn7 can interact with itself and is localized to the nucleus under normal growth conditions as well as during oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document