The 70-kilodalton adenylyl cyclase-associated protein is not essential for interaction of Saccharomyces cerevisiae adenylyl cyclase with RAS proteins

1992 ◽  
Vol 12 (11) ◽  
pp. 4937-4945
Author(s):  
J Wang ◽  
N Suzuki ◽  
T Kataoka

In the yeast Saccharomyces cerevisiae, adenylyl cyclase is regulated by RAS proteins. We show here that the yeast adenylyl cyclase forms at least two high-molecular-weight complexes, one with the RAS protein-dependent adenylyl cyclase activity and the other with the Mn(2+)-dependent activity, which are separable by their size difference. The 70-kDa adenylyl cyclase-associated protein (CAP) existed in the former complex but not in the latter. Missense mutations in conserved motifs of the leucine-rich repeats of the catalytic subunit of adenylyl cyclase abolished the RAS-dependent activity, which was accompanied by formation of a very high molecular weight complex having the Mn(2+)-dependent activity. Contrary to previous results, disruption of the gene encoding CAP did not alter the extent of RAS protein-dependent activation of adenylyl cyclase, while a concomitant decrease in the size of the RAS-responsive complex was observed. These results indicate that CAP is not essential for interaction of the yeast adenylyl cyclase with RAS proteins even though it is an inherent component of the RAS-responsive adenylyl cyclase complex.

1992 ◽  
Vol 12 (11) ◽  
pp. 4937-4945 ◽  
Author(s):  
J Wang ◽  
N Suzuki ◽  
T Kataoka

In the yeast Saccharomyces cerevisiae, adenylyl cyclase is regulated by RAS proteins. We show here that the yeast adenylyl cyclase forms at least two high-molecular-weight complexes, one with the RAS protein-dependent adenylyl cyclase activity and the other with the Mn(2+)-dependent activity, which are separable by their size difference. The 70-kDa adenylyl cyclase-associated protein (CAP) existed in the former complex but not in the latter. Missense mutations in conserved motifs of the leucine-rich repeats of the catalytic subunit of adenylyl cyclase abolished the RAS-dependent activity, which was accompanied by formation of a very high molecular weight complex having the Mn(2+)-dependent activity. Contrary to previous results, disruption of the gene encoding CAP did not alter the extent of RAS protein-dependent activation of adenylyl cyclase, while a concomitant decrease in the size of the RAS-responsive complex was observed. These results indicate that CAP is not essential for interaction of the yeast adenylyl cyclase with RAS proteins even though it is an inherent component of the RAS-responsive adenylyl cyclase complex.


1991 ◽  
Vol 11 (3) ◽  
pp. 1248-1257 ◽  
Author(s):  
J E Gerst ◽  
K Ferguson ◽  
A Vojtek ◽  
M Wigler ◽  
J Field

CAP, a protein from Saccharomyces cerevisiae that copurifies with adenylyl cyclase, appears to be required for yeast cells to be fully responsive to RAS proteins. CAP also appears to be required for normal cell morphology and responsiveness to nutrient deprivation and excess. We describe here a molecular and phenotypic analysis of the CAP protein. The N-terminal domain is necessary and sufficient for cellular response to activated RAS protein, while the C-terminal domain is necessary and sufficient for normal cellular morphology and responses to nutrient extremes. Thus, CAP is a novel example of a bifunctional component involved in the regulation of diverse signal transduction pathways.


1991 ◽  
Vol 11 (3) ◽  
pp. 1248-1257 ◽  
Author(s):  
J E Gerst ◽  
K Ferguson ◽  
A Vojtek ◽  
M Wigler ◽  
J Field

CAP, a protein from Saccharomyces cerevisiae that copurifies with adenylyl cyclase, appears to be required for yeast cells to be fully responsive to RAS proteins. CAP also appears to be required for normal cell morphology and responsiveness to nutrient deprivation and excess. We describe here a molecular and phenotypic analysis of the CAP protein. The N-terminal domain is necessary and sufficient for cellular response to activated RAS protein, while the C-terminal domain is necessary and sufficient for normal cellular morphology and responses to nutrient extremes. Thus, CAP is a novel example of a bifunctional component involved in the regulation of diverse signal transduction pathways.


2004 ◽  
Vol 25 ◽  
pp. S512
Author(s):  
Toshitaka Kawarai ◽  
Antonio Orlacchio ◽  
Ekaterina Rogaeva ◽  
Susan Ling ◽  
Hiroshi Hasegawa ◽  
...  

1991 ◽  
Vol 7 (1) ◽  
pp. 63-69 ◽  
Author(s):  
D. V. Gnatenko ◽  
A. I. Kornelyuk ◽  
I. V. Kurochkin ◽  
G. H. Matsuka

Author(s):  
Erwan DENIS ◽  
Erwan Denis ◽  
Sophie Sanchez ◽  
Barbara Mairey ◽  
Odette Beluche ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document