scholarly journals A group of scs elements function as domain boundaries in an enhancer-blocking assay.

1992 ◽  
Vol 12 (5) ◽  
pp. 2424-2431 ◽  
Author(s):  
R Kellum ◽  
P Schedl

Chromosomes of higher eukaryotes are thought to be organized into a series of discrete and topologically independent higher-order domains. In addition to providing a mechanism for chromatin compaction, these higher-order domains are thought to define independent units of gene activity. Implicit in most models for the folding of the chromatin fiber are special nucleoprotein structures, the domain boundaries, which serve to delimit each higher-order chromosomal domain. We have used an "enhancer-blocking assay" to test putative domain boundaries for boundary function in vivo. This assay is based on the notion that in delimiting independent units of gene activity, domain boundaries should be able to restrict the scope of activity of enhancer elements to genes which reside within the same domain. In this case, interposing a boundary between an enhancer and a promoter should block the action of the enhancer. In the experiments reported here, we have used the yolk protein-1 enhancer element and an hsp70 promoter:lacZ fusion gene to test putative boundary DNA segments for enhancer-blocking activity. We have found that several scs-like elements are capable of blocking the action of the yp-1 enhancer when placed between it and the hsp70 promoter. In contrast, a MAR/SAR DNA segment and another spacer DNA segment had no apparent effect on enhancer activity.

1992 ◽  
Vol 12 (5) ◽  
pp. 2424-2431
Author(s):  
R Kellum ◽  
P Schedl

Chromosomes of higher eukaryotes are thought to be organized into a series of discrete and topologically independent higher-order domains. In addition to providing a mechanism for chromatin compaction, these higher-order domains are thought to define independent units of gene activity. Implicit in most models for the folding of the chromatin fiber are special nucleoprotein structures, the domain boundaries, which serve to delimit each higher-order chromosomal domain. We have used an "enhancer-blocking assay" to test putative domain boundaries for boundary function in vivo. This assay is based on the notion that in delimiting independent units of gene activity, domain boundaries should be able to restrict the scope of activity of enhancer elements to genes which reside within the same domain. In this case, interposing a boundary between an enhancer and a promoter should block the action of the enhancer. In the experiments reported here, we have used the yolk protein-1 enhancer element and an hsp70 promoter:lacZ fusion gene to test putative boundary DNA segments for enhancer-blocking activity. We have found that several scs-like elements are capable of blocking the action of the yp-1 enhancer when placed between it and the hsp70 promoter. In contrast, a MAR/SAR DNA segment and another spacer DNA segment had no apparent effect on enhancer activity.


2009 ◽  
Vol 30 (4) ◽  
pp. 1067-1076 ◽  
Author(s):  
Mo Li ◽  
Vladimir E. Belozerov ◽  
Haini N. Cai

ABSTRACT Chromatin boundaries facilitate independent gene regulation by insulating genes from the effects of enhancers or organized chromatin. However, the mechanisms of boundary action are not well understood. To investigate whether boundary function depends on a higher order of chromatin organization, we examined the function of several Drosophila melanogaster insulators in cells with reduced chromatin-remodeling activities. We found that knockdown of NURF301 and ISWI, key components of the nucleosome-remodeling factor (NURF), synergistically disrupted the enhancer-blocking function of Fab7 and SF1 and augmented the function of Fab8. Mutations in Nurf301/Ebx and Iswi also affected the function of these boundaries in vivo. We further show that ISWI was localized on the endogenous Fab7 and Fab8 insulators and that NURF knockdown resulted in a marked increase in the nucleosome occupancy at these insulator sites. In contrast to the effect of NURF knockdown, reduction in dMi-2, the ATPase component of the Drosophila nucleosome-remodeling and deacetylation (NuRD) complex, augmented Fab7 and suppressed Fab8. Our results provide the first evidence that higher-order chromatin organization influences the enhancer-blocking activity of chromatin boundaries. In particular, the NURF and NuRD nucleosome-remodeling complexes may regulate Hox expression by modulating the function of boundaries in these complexes. The unique responses by different classes of boundaries to changes in the chromatin environment may be indicative of their distinct mechanisms of action, which may influence their placement in the genome and selection during evolution.


Development ◽  
1997 ◽  
Vol 124 (24) ◽  
pp. 4971-4982 ◽  
Author(s):  
Z. Yin ◽  
X.L. Xu ◽  
M. Frasch

The Drosophila tinman homeobox gene has a major role in early mesoderm patterning and determines the formation of visceral mesoderm, heart progenitors, specific somatic muscle precursors and glia-like mesodermal cells. These functions of tinman are reflected in its dynamic pattern of expression, which is characterized by initial widespread expression in the trunk mesoderm, then refinement to a broad dorsal mesodermal domain, and finally restricted expression in heart progenitors. Here we show that each of these phases of expression is driven by a discrete enhancer element, the first being active in the early mesoderm, the second in the dorsal mesoderm and the third in cardioblasts. We provide evidence that the early-active enhancer element is a direct target of twist, a gene encoding a basic helix-loop-helix (bHLH) protein, which is necessary for tinman activation. This 180 bp enhancer includes three E-box sequences which bind Twist protein in vitro and are essential for enhancer activity in vivo. Ectodermal misexpression of twist causes ectopic activation of this enhancer in ectodermal cells, indicating that twist is the only mesoderm-specific activator of early tinman expression. We further show that the 180 bp enhancer also includes negatively acting sequences. Binding of Even-skipped to these sequences appears to reduce twist-dependent activation in a periodic fashion, thus producing a striped tinman pattern in the early mesoderm. In addition, these sequences prevent activation of tinman by twist in a defined portion of the head mesoderm that gives rise to hemocytes. We find that this repression requires the function of buttonhead, a head-patterning gene, and that buttonhead is necessary for normal activation of the hematopoietic differentiation gene serpent in the same area. Together, our results show that tinman is controlled by an array of discrete enhancer elements that are activated successively by differential genetic inputs, as well as by closely linked activator and repressor binding sites within an early-acting enhancer, which restrict twist activity to specific areas within the twist expression domain.


1995 ◽  
Vol 15 (2) ◽  
pp. 892-903 ◽  
Author(s):  
S Plaza ◽  
C Dozier ◽  
M C Langlois ◽  
S Saule

Using nuclear run-on assays, we showed that the tissue-specific expression of quail Pax-6 (Pax-QNR) P0-initiated mRNAs is due in part to regulation of the gene at the transcriptional level. Regulatory sequences governing neuroretina-specific expression of the P0-initiated mRNAs were investigated. By using reporter-based expression assays, we characterized a region within the Pax-QNR gene, located 7.5 kbp downstream from the P0 promoter, that functions as an enhancer in neuroretina cells but not in nonexpressing P0-initiated mRNA cells (quail embryo cells and quail retinal pigment epithelial cells). This enhancer element functioned in a position- and orientation-independent manner both on the Pax-QNR P0 promoter and the heterologous thymidine kinase promoter. Moreover, this enhancer element exhibited a developmental stage-specific activity during embryonic neuroretina development: in contrast to activity at day E7, the enhancer activity was very weak at day E5. This paralleled the level of expression of P0-initiated mRNAs observed at the same stages. Using footprinting, gel retardation, and Southwestern (DNA-protein) analysis, we demonstrated the existence of four neuroretina-specific nuclear protein-binding sites, involving multiple unknown factors. In addition we showed that the quail enhancer element is structurally and functionally conserved in mice. All of these results strongly suggest that this enhancer element may contribute to the neuroretina-specific transcriptional regulation of the Pax-6 gene in vivo.


Development ◽  
1991 ◽  
Vol 113 (2) ◽  
pp. 539-550 ◽  
Author(s):  
I. Matsuo ◽  
M. Kitamura ◽  
K. Okazaki ◽  
K. Yasuda

We have characterized a regulatory region of the chicken alpha A-crystallin gene using transfection assays, which revealed that a 84 base pair element (−162 to −79) in the 5′ flanking sequence is necessary and sufficient for lens-specific expression. A multimer of this element functions as lens-specific enhancer and synergistically activates transcription from chicken alpha A-crystallin or beta-actin basal promoters fused to the CAT gene. In vivo competition experiments demonstrated that DNA sequences containing the 84 bp element reduced alpha A-crystallin-CAT fusion gene expression. A nuclear factor present exclusively in lens cells binds to the 84 bp element in the region between positions −165 and −140. Southwestern blot analysis showed that 61,000 Mr (61 × 10(3) Mr) lens nuclear protein exhibited DNA-binding activity specific to the 84 bp element. Our data suggested that the 61 × 10(3) Mr nuclear protein, and the 84 bp element that it interacts with, may be involved in regulating the alpha A-crystallin gene expression in vivo.


2002 ◽  
Vol 22 (12) ◽  
pp. 4293-4308 ◽  
Author(s):  
Charles K. Kaufman ◽  
Satrajit Sinha ◽  
Diana Bolotin ◽  
Jie Fan ◽  
Elaine Fuchs

ABSTRACT In this report, we explored the mechanisms underlying keratinocyte-specific and differentiation-specific gene expression in the skin. We have identified five keratinocyte-specific, open chromatin regions that exist within the 6 kb of 5′ upstream regulatory sequence known to faithfully recapitulate the strong endogenous keratin 5 (K5) promoter and/or enhancer activity. One of these, DNase I-hypersensitive site (HSs) 4, was unique in that it acted independently to drive abundant and keratinocyte-specific reporter gene activity in culture and in transgenic mice, despite the fact that it was not essential for K5 enhancer activity. We have identified evolutionarily conserved regulatory elements and a number of their associated proteins that bind to this compact and complex enhancer element. The 125-bp 3′ half of this element (referred to as 4.2) is by far the smallest known strong enhancer element possessing keratinocyte-specific activity in vivo. Interestingly, its activity is restricted to a subset of progeny of K5-expressing cells located within the sebaceous gland. The other half of HSs 4 (termed 4.1) possesses activity to suppress sebocyte-specific expression and induce expression in the channel (inner root sheath) cells surrounding the hair shaft. Our findings lead us to a view of keratinocyte gene expression which is determined by multiple regulatory modules, many of which contain AP-2 and/or Sp1/Sp3 binding sites for enhancing expression in skin epithelium, but which also harbor one or more unique sites for the binding of factors which determine specificity. Through mixing and matching of these modules, additional levels of specificity are obtained, indicating that both transcriptional repressors and activators govern the specificity.


2021 ◽  
Vol 49 (7) ◽  
pp. 3856-3875
Author(s):  
Marina Kulik ◽  
Melissa Bothe ◽  
Gözde Kibar ◽  
Alisa Fuchs ◽  
Stefanie Schöne ◽  
...  

Abstract The glucocorticoid (GR) and androgen (AR) receptors execute unique functions in vivo, yet have nearly identical DNA binding specificities. To identify mechanisms that facilitate functional diversification among these transcription factor paralogs, we studied them in an equivalent cellular context. Analysis of chromatin and sequence suggest that divergent binding, and corresponding gene regulation, are driven by different abilities of AR and GR to interact with relatively inaccessible chromatin. Divergent genomic binding patterns can also be the result of subtle differences in DNA binding preference between AR and GR. Furthermore, the sequence composition of large regions (>10 kb) surrounding selectively occupied binding sites differs significantly, indicating a role for the sequence environment in guiding AR and GR to distinct binding sites. The comparison of binding sites that are shared shows that the specificity paradox can also be resolved by differences in the events that occur downstream of receptor binding. Specifically, shared binding sites display receptor-specific enhancer activity, cofactor recruitment and changes in histone modifications. Genomic deletion of shared binding sites demonstrates their contribution to directing receptor-specific gene regulation. Together, these data suggest that differences in genomic occupancy as well as divergence in the events that occur downstream of receptor binding direct functional diversification among transcription factor paralogs.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 445
Author(s):  
Daniela Zizioli ◽  
Simona Bernardi ◽  
Marco Varinelli ◽  
Mirko Farina ◽  
Luca Mignani ◽  
...  

Zebrafish has proven to be a versatile and reliable experimental in vivo tool to study human hematopoiesis and model hematological malignancies. Transgenic technologies enable the generation of specific leukemia types by the expression of human oncogenes under specific promoters. Using this technology, a variety of myeloid and lymphoid malignancies zebrafish models have been described. Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasia characterized by the BCR-ABL1 fusion gene, derived from the t (9;22) translocation causing the Philadelphia Chromosome (Ph). The BCR-ABL1 protein is a constitutively activated tyrosine kinas inducing the leukemogenesis and resulting in an accumulation of immature leukemic cells into bone marrow and peripheral blood. To model Ph+ CML, a transgenic zebrafish line expressing the human BCR-ABL1 was generated by the Gal4/UAS system, and then crossed with the hsp70-Gal4 transgenic line. The new line named (BCR-ABL1pUAS:CFP/hsp70-Gal4), presented altered expression of hematopoietic markers during embryonic development compared to controls and transgenic larvae showed proliferating hematopoietic cells in the caudal hematopoietic tissue (CHT). The present transgenic zebrafish would be a robust CML model and a high-throughput drug screening tool.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jie Li ◽  
Phillip M. Galbo ◽  
Weida Gong ◽  
Aaron J. Storey ◽  
Yi-Hsuan Tsai ◽  
...  

AbstractRecurring chromosomal translocation t(10;17)(p15;q21) present in a subset of human acute myeloid leukemia (AML) patients creates an aberrant fusion gene termed ZMYND11-MBTD1 (ZM); however, its function remains undetermined. Here, we show that ZM confers primary murine hematopoietic stem/progenitor cells indefinite self-renewal capability ex vivo and causes AML in vivo. Genomics profilings reveal that ZM directly binds to and maintains high expression of pro-leukemic genes including Hoxa, Meis1, Myb, Myc and Sox4. Mechanistically, ZM recruits the NuA4/Tip60 histone acetyltransferase complex to cis-regulatory elements, sustaining an active chromatin state enriched in histone acetylation and devoid of repressive histone marks. Systematic mutagenesis of ZM demonstrates essential requirements of Tip60 interaction and an H3K36me3-binding PWWP (Pro-Trp-Trp-Pro) domain for oncogenesis. Inhibitor of histone acetylation-‘reading’ bromodomain proteins, which act downstream of ZM, is efficacious in treating ZM-induced AML. Collectively, this study demonstrates AML-causing effects of ZM, examines its gene-regulatory roles, and reports an attractive mechanism-guided therapeutic strategy.


Sign in / Sign up

Export Citation Format

Share Document