Differential effects of Cdc68 on cell cycle-regulated promoters in Saccharomyces cerevisiae

1994 ◽  
Vol 14 (11) ◽  
pp. 7455-7465 ◽  
Author(s):  
D Lycan ◽  
G Mikesell ◽  
M Bunger ◽  
L Breeden

Swi4 and Swi6 form a complex which is required for Start-dependent activation of HO and for high-level expression of G1 cyclin genes CLN1 and CLN2. To identify other regulators of this pathway, we screened for dominant, recessive, conditional, and allele-specific suppressors of swi4 mutants. We isolated 16 recessive suppressors that define three genes, SSF1, SSF5, and SSF9 (suppressor of swi four). Mutations in all three genes bypass the requirement for both Swi4 and Swi6 for HO transcription and activate transcription from reporter genes lacking upstream activating sequences (UASs). SSF5 is allelic with SIN4 (TSF3), a gene implicated in global repression of transcription and chromatin structure, and SSF9 is likely to be a new global repressor of transcription. SSF1 is allelic with CDC68 (SPT16). cdc68 mutations have been shown to increase expression from defective promoters, while preventing transcription from other intact promoters, including CLN1 and CLN2. We find that CDC68 is a required activator of both SWI4 and SWI6, suggesting that CDC68's role at the CLN promoters may be indirect. The target of CDC68 within the SWI4 promoter is complex in that known activating elements (MluI cell cycle boxes) in the SWI4 promoter are required for CDC68 dependence but only within the context of the full-length promoter. This result suggests that there may be both a chromatin structure and a UAS-specific component to Cdc68 function at SWI4. We suggest that Cdc68 functions both in the assembly of repressive complexes that form on many intact promoters in vivo and in the relief of this repression during gene activation.

1994 ◽  
Vol 14 (11) ◽  
pp. 7455-7465 ◽  
Author(s):  
D Lycan ◽  
G Mikesell ◽  
M Bunger ◽  
L Breeden

Swi4 and Swi6 form a complex which is required for Start-dependent activation of HO and for high-level expression of G1 cyclin genes CLN1 and CLN2. To identify other regulators of this pathway, we screened for dominant, recessive, conditional, and allele-specific suppressors of swi4 mutants. We isolated 16 recessive suppressors that define three genes, SSF1, SSF5, and SSF9 (suppressor of swi four). Mutations in all three genes bypass the requirement for both Swi4 and Swi6 for HO transcription and activate transcription from reporter genes lacking upstream activating sequences (UASs). SSF5 is allelic with SIN4 (TSF3), a gene implicated in global repression of transcription and chromatin structure, and SSF9 is likely to be a new global repressor of transcription. SSF1 is allelic with CDC68 (SPT16). cdc68 mutations have been shown to increase expression from defective promoters, while preventing transcription from other intact promoters, including CLN1 and CLN2. We find that CDC68 is a required activator of both SWI4 and SWI6, suggesting that CDC68's role at the CLN promoters may be indirect. The target of CDC68 within the SWI4 promoter is complex in that known activating elements (MluI cell cycle boxes) in the SWI4 promoter are required for CDC68 dependence but only within the context of the full-length promoter. This result suggests that there may be both a chromatin structure and a UAS-specific component to Cdc68 function at SWI4. We suggest that Cdc68 functions both in the assembly of repressive complexes that form on many intact promoters in vivo and in the relief of this repression during gene activation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 349-349
Author(s):  
M. A. Bender ◽  
Davide Bau' ◽  
Tobias Ragoczy ◽  
Rachel Byron ◽  
Ye Zhan ◽  
...  

Abstract Abstract 349 The human and mouse β-globin loci share a conserved structure in which the locus control region (LCR) and genes are flanked by three CTCF bound DNaseI hypersensitive sites (HSs); 3‘HS1 downstream, and 5‘HS5 and human and mouse orthologues HS-111 or HS-62 upstream. In mice HS-62 and 3‘HS1 delineate a DNase sensitive domain. During erythroid differentiation, high-level expression of the β-globin locus is associated with LCR-dependent re-localization of the locus from the nuclear periphery to the nucleoplasm, where it associates with foci of serine-phosphorylated PolII deemed transcription factories (TFs). To investigate the relationships among chromatin structure, nuclear localization and β-globin expression during human erythropoiesis, CD34 progenitor cells were differentiated and analyzed by ChIP-array, primary transcript FISH, immuno-FISH, and chromatin conformation capture, carbon copy (5C). Localization of the β-locus away from the nuclear periphery and to TFs, and detection of β-nascent transcripts are rare events at day 4 (proerythroblasts), whereas by day 15 (polychromatic erythroblasts), nearly all loci are centrally located, associated with TFs and actively expressing. Three megabase profiles of complementary active and repressive histone marks (H3 lysine 4 di-methylation (DiK4) and H3 lysine 27 tri-methylation) reveal that DiK4 is enriched in the LCR and adult genes in undifferentiated CD34 cells and nears maximal enrichment by day 4. Thus the chromatin landscape is set up prior to erythroid commitment and is increased at day 4, but shows little change with activation. These profiles also reveal a previously un-described 257kb domain spanning from HS-111 to +146 relative to the ε-gene cap, with CTCF bound at its boundaries. 5C analysis reveals a high linkage frequency between the LCR and β-gene at day 4, prior to β-gene activation. Thus proximity may be necessary, but is not sufficient for high-level expression. In addition, the LCR and adult genes have frequent contact with surrounding regions, but interactions are sharply demarcated by HS-111 and +146, linking the above histone modification domain and 5C structure. The flanking regions HS-111, 3‘HS1 and +146 associate with the LCR and genes in an active chromatin hub (ACH)-like structure. By combining 5C with the Integrated Modeling Platform, a high-resolution three-dimensional (3D) model of chromatin structure was generated and revealed that the CTCF containing flanking regions, HS-111, 5'HS5, 3‘HS1 and +146 are in proximity and anchor loops of the intervening regions. The LCR and β-gene lie in close proximity (<100nm) within a tight chromatin globule. At day 15, 5C-interactions become more restricted. Throughout the 1Mb assayed there is a global decrease in linkages and, unlike the ACH model, associations of the flanking HSs with each other diminish. In contrast, the LCR and β-gene are more highly linked. While the distance between the LCR and β-gene remains under 100nm at day 15, most of the remaining 3D structure is less compact. One notable exception is with differentiation the LCR is in closer proximity to the β-gene 3‘enhancer. In addition, β-gene activation is associated with an increase in the contour length of the region, possibly correlating with DNaseI accessibility. In summary, our results reveal that acquisition of DiK4 precedes erythroid commitment. Enrichment of this active histone modification may occur in the nuclear periphery and is associated with a compact structure in which the flanking HSs, LCR and β-gene are in close proximity. Notably, close association of the LCR and β-gene precedes association with a TF and is not sufficient for expression. This suggests that if an ACH structure is important for function, its role may be limited to the initiation, but not the maintenance of gene expression. Alternatively, this compact structure may reflect the mafK-mediated recruitment of co-repressors to the LCR, as we demonstrated previously. The exchange of these repressors for activators could lead to the observed relocation from the periphery to TFs where high-level expression occurs and provides an explanation for the large change in expression that occurs despite a subtle change in the proximity of the LCR and β-gene. Preliminary studies on cell lines harboring intact, and LCR deficient chromosomes suggest the LCR may effect boundary element formation, domains of histone modifications and structure of the region. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 113 (11) ◽  
pp. 2375-2385 ◽  
Author(s):  
Joerg Faber ◽  
Andrei V. Krivtsov ◽  
Matthew C. Stubbs ◽  
Renee Wright ◽  
Tina N. Davis ◽  
...  

Leukemias that harbor translocations involving the mixed lineage leukemia gene (MLL) possess unique biologic characteristics and often have an unfavorable prognosis. Gene expression analyses demonstrate a distinct profile for MLL-rearranged leukemias with consistent high-level expression of select Homeobox genes, including HOXA9. Here, we investigated the effects of HOXA9 suppression in MLL-rearranged and MLL-germline leukemias using RNA interference. Gene expression profiling after HOXA9 suppression demonstrated co–down-regulation of a program highly expressed in human MLL-AML and murine MLL-leukemia stem cells, including HOXA10, MEIS1, PBX3, and MEF2C. We demonstrate that HOXA9 depletion in 17 human AML/ALL cell lines (7 MLL-rearranged, 10 MLL-germline) induces proliferation arrest and apoptosis specifically in MLL-rearranged cells (P = .007). Similarly, assessment of primary AMLs demonstrated that HOXA9 suppression induces apoptosis to a greater extent in MLL-rearranged samples (P = .01). Moreover, mice transplanted with HOXA9-depleted t(4;11) SEMK2 cells revealed a significantly lower leukemia burden, thus identifying a role for HOXA9 in leukemia survival in vivo. Our data indicate an important role for HOXA9 in human MLL-rearranged leukemias and suggest that targeting HOXA9 or downstream programs may be a novel therapeutic option.


1996 ◽  
Vol 319 (2) ◽  
pp. 441-447 ◽  
Author(s):  
Vijay BHANDARI ◽  
Rachael DANIEL ◽  
Pheng Siew LIM ◽  
Andrew BATEMAN

Granulins (grns) or epithelins (epis) are peptides with molecular masses of approx. 6 kDa that modulate the growth of cells. The precursor for the grns/epis, which might itself be biologically active, is a secreted glycoprotein containing multiple repeats of the grn/epi motif. Grn/epi mRNA occurs widely in vivo, particularly in tissues rich in epithelial and haematopoietic cells. To understand better the role of the gene products for grn/epi it is important to determine the patterns of grn/epi gene expression and how this is regulated. To assist in this we have obtained the 5´ sequence of the human grn/epi gene, and using chimaeras of the grn/epi -5´ sequence and the chloramphenicol acetyltransferase gene we have shown a strong promoter activity associated with the 5´ sequence of the human grn/epi gene. We have further delineated regions of the 5´ sequence that confer high-level expression on the chimaeric gene.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3633-3633
Author(s):  
Louis C. Dore ◽  
Christopher R. Vakoc ◽  
Gerd A. Blobel ◽  
Ross C. Hardison ◽  
David M. Bodine ◽  
...  

Abstract Alpha Hemoglobin Stabilizing Protein (AHSP, Eraf) is an abundant erythroid protein that binds and stabilizes alpha globin and alpha hemoglobin (Hb). In mice, loss of AHSP causes hemolytic anemia, with elevated levels of reactive oxygen species and Hb precipitation in erythrocytes. Loss of AHSP exacerbates beta thalassemia phenotypes in mice, presumably by enhancing the toxicity of excessive free alpha Hb. Based on these findings, AHSP is a candidate modifier gene for beta thalassemia in humans. No mutations in the AHSP coding region have been identified in patients to date. However, several groups reported an inverse correlation between beta thalassemia severity and erythroid AHSP expression levels, raising the possibility that AHSP is a quantitative trait modifier of beta thalassemia. To address this possibility, it is important to define the mechanisms that control expression of the AHSP gene. Transcripts of murine Ahsp are inducible by GATA-1. The goals of the current studies are to investigate the mechanisms of this induction and to define the DNA domain that regulates the locus. Using phylogenetic comparisons, we identified a hotspot for mammalian chromosomal rearrangement just downstream of the Ahsp gene. This hotspot is located at the end of a syntenic block of approximately 350 kb that is conserved in mammals and likely marks the 3′ end of the gene regulatory domain. We focused our initial functional studies on a 7 kb genomic region bounded at the 5′ (centromeric) end of Ahsp by the nearest adjacent gene, an EST expressed in multiple tissues, and at the 3′ (telomeric) end by the rearrangement hotspot. In transient transfection assays, the Ahsp promoter region conferred erythroid-specific expression to a linked reporter gene. In heterologous cells, GATA-1 transactivated the Ahsp promoter in a dose-dependent fashion. To examine GATA-1 binding and its subsequent effects on the Ahsp gene in vivo, we used G1E-ER4 cells, a GATA-1 null erythroblast line that undergoes terminal erythroid maturation after activation of an estradiol-inducible form of GATA-1. We made several findings with regards to the role of GATA-1 in Ahsp gene regulation. First, GATA-1 and its cofactor, Friend of GATA-1 (FOG-1), bind directly to the Ahsp locus at regions that contain conserved GATA consensus motifs and are predicted to be important erythroid regulatory elements by our bioinformatic studies. Second, GATA-1 induces epigenetic changes in chromatin structure that are associated with gene activation, including formation of a DNase I hypersensitive site, hyperacetylation of histones H3 and H4, and methylation of histone H3 lysine-4. Together, these findings begin to establish the DNA region and mechanisms that control Ahsp transcription, allowing for further studies to map the cis elements responsible for population variations in gene expression.


1989 ◽  
Vol 9 (5) ◽  
pp. 1823-1831 ◽  
Author(s):  
P M Mathisen ◽  
L Miller

We have used in vitro explant cultures of Xenopus laevis skin to investigate the role that the thyroid hormone triiodothyronine (T3) plays in activating the 63-kilodalton (kDa) keratin genes. The activation of these genes in vivo requires two distinct steps, one independent of T3 and one dependent on T3. In this report we have shown that the same two steps are required to fully activate the 63-kDa keratin genes in skin explant cultures, and we have characterized the T3-mediated step in greater detail. Unlike the induction of transcription by T3 or steroid hormones in adult tissues, there was a long latent period of approximately 2 days between the addition of T3 to skin cultures and an increase in concentration of keratin mRNA. While the T3 induction of 63-kDa keratin gene transcription cannot occur until age 48, a short transient exposure of stage 40 skin cultures to T3 resulted in high-level expression of these genes 5 days later, when normal siblings had reached stage 48. This result indicates that T3 induces a stable change in epidermal cells which can be expressed much later, after extensive cell proliferation has occurred in the absence of T3. Once the 63-kDa keratin genes were induced, they were stably expressed, and by the end of metamorphosis T3 had no further effect on their expression. The results suggest that T3 induces constitutive expression of the 63-kDa keratin genes during metamorphosis.


1990 ◽  
Vol 10 (9) ◽  
pp. 4623-4629 ◽  
Author(s):  
L M Mylin ◽  
M Johnston ◽  
J E Hopper

GAL4I, GAL4II, and GAL4III are three forms of the yeast transcriptional activator protein that are readily distinguished on the basis of electrophoretic mobility during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phosphorylation accounts for the reduced mobility of the slowest-migrating form, GAL4III, which is found to be closely associated with high-level GAL/MEL gene expression (L. Mylin, P. Bhat, and J. Hopper, Genes Dev. 3:1157-1165, 1989). Here we show that GAL4II, like GAL4III, can be converted to GAL4I by phosphatase treatment, suggesting that in vivo GAL4II is derived from GAL4I by phosphorylation. We found that cells which overproduced GAL4 under conditions in which it drove moderate to low levels of GAL/MEL gene expression showed only forms GAL4I and GAL4II. To distinguish which forms of GAL4 (GAL4I, GAL4II, or both) might be responsible for transcription activation in the absence of GAL4III, we performed immunoblot analysis on UASgal-binding-competent GAL4 proteins from four gal4 missense mutants selected for their inability to activate transcription (M. Johnston and J. Dover, Proc. Natl. Acad. Sci. USA 84:2401-2405, 1987; Genetics 120;63-74, 1988). The three mutants with no detectable GAL1 expression did not appear to form GAL4II or GAL4III, but revertants in which GAL4-dependent transcription was restored did display GAL4II- or GAL4III-like electrophoretic species. Detection of GAL4II in a UASgal-binding mutant suggests that neither UASgal binding nor GAL/MEL gene activation is required for the formation of GAL4II. Overall, our results imply that GAL4I may be inactive in transcriptional activation, whereas GAL4II appears to be active. In light of this work, we hypothesize that phosphorylation of GAL4I makes it competent to activate transcription.


Sign in / Sign up

Export Citation Format

Share Document