Mouse p53 represses the rat brain creatine kinase gene but activates the rat muscle creatine kinase gene

1994 ◽  
Vol 14 (12) ◽  
pp. 8483-8492
Author(s):  
J Zhao ◽  
F I Schmieg ◽  
D T Simmons ◽  
G R Molloy

The creatine kinases (CK) regenerate ATP for cellular reactions with a high energy expenditure. While muscle CK (CKM) is expressed almost exclusively in adult skeletal and cardiac muscle, brain CK (CKB) expression is more widespread and is highest in brain glial cells. CKB expression is also high in human lung tumor cells, many of which contain mutations in p53 alleles. We have recently detected high levels of CKB mRNA in HeLa cells and, in this study, have tested whether this may be due to the extremely low amounts of p53 protein present in HeLa cells. Transient transfection experiments showed that wild-type mouse p53 severely repressed the rat CKB promoter in HeLa but not CV-1 monkey kidney cells, suggesting that, in HeLa but not CV-1 cells, p53 either associates with a required corepressor or undergoes a posttranslational modification necessary for CKB repression. Conversely, mouse wild-type p53 strongly activated the rat CKM promoter in CV-1 cells but not in HeLa cells, suggesting that, in CV-1 cells, p53 may associate with a required coactivator or is modified in a manner necessary for CKM activation. The DNA sequences required for p53-mediated modulations were found to be within bp -195 to +5 of the CKB promoter and within bp -168 to -97 of the CKM promoter. Moreover, a 112-bp fragment from the proximal rat CKM promoter (bp -168 to -57), which contained five degenerate p53-binding elements, was capable of conferring p53-mediated activation on a heterologous promoter in CV-1 cells. Also, this novel p53 sequence, when situated in the native 168-bp rat CKM promoter, conferred p53-mediated activation equal to or greater than that of the originally characterized far-upstream (bp -3160) mouse CKM p53 element. Therefore, CKB and CKM may be among the few cellular genes which could be targets of p53 in vivo. In addition, we analyzed a series of missense mutants with alterations in conserved region II of p53. Mutations affected p53 transrepression and transactivation activities differently, indicating that these activities in p53 are separable. The ability of p53 mutants to transactivate correlated well with their ability to inhibit transformation of rat embryonic fibroblasts by adenovirus E1a and activated Ras.

1994 ◽  
Vol 14 (12) ◽  
pp. 8483-8492 ◽  
Author(s):  
J Zhao ◽  
F I Schmieg ◽  
D T Simmons ◽  
G R Molloy

The creatine kinases (CK) regenerate ATP for cellular reactions with a high energy expenditure. While muscle CK (CKM) is expressed almost exclusively in adult skeletal and cardiac muscle, brain CK (CKB) expression is more widespread and is highest in brain glial cells. CKB expression is also high in human lung tumor cells, many of which contain mutations in p53 alleles. We have recently detected high levels of CKB mRNA in HeLa cells and, in this study, have tested whether this may be due to the extremely low amounts of p53 protein present in HeLa cells. Transient transfection experiments showed that wild-type mouse p53 severely repressed the rat CKB promoter in HeLa but not CV-1 monkey kidney cells, suggesting that, in HeLa but not CV-1 cells, p53 either associates with a required corepressor or undergoes a posttranslational modification necessary for CKB repression. Conversely, mouse wild-type p53 strongly activated the rat CKM promoter in CV-1 cells but not in HeLa cells, suggesting that, in CV-1 cells, p53 may associate with a required coactivator or is modified in a manner necessary for CKM activation. The DNA sequences required for p53-mediated modulations were found to be within bp -195 to +5 of the CKB promoter and within bp -168 to -97 of the CKM promoter. Moreover, a 112-bp fragment from the proximal rat CKM promoter (bp -168 to -57), which contained five degenerate p53-binding elements, was capable of conferring p53-mediated activation on a heterologous promoter in CV-1 cells. Also, this novel p53 sequence, when situated in the native 168-bp rat CKM promoter, conferred p53-mediated activation equal to or greater than that of the originally characterized far-upstream (bp -3160) mouse CKM p53 element. Therefore, CKB and CKM may be among the few cellular genes which could be targets of p53 in vivo. In addition, we analyzed a series of missense mutants with alterations in conserved region II of p53. Mutations affected p53 transrepression and transactivation activities differently, indicating that these activities in p53 are separable. The ability of p53 mutants to transactivate correlated well with their ability to inhibit transformation of rat embryonic fibroblasts by adenovirus E1a and activated Ras.


1990 ◽  
Vol 10 (12) ◽  
pp. 6533-6543 ◽  
Author(s):  
G M Hobson ◽  
G R Molloy ◽  
P A Benfield

The functional organization of the rat brain creatine kinase (ckb) promoter was analyzed by deletion, linker scanning, and substitution mutagenesis. Mutations were introduced into the ckb promoter of hybrid ckb/neo (neomycin resistance gene) genes, and the mutant genes were expressed transiently in HeLa cells. Expression was assayed by primer extension analysis of neo RNA, which allowed the transcription start sites and the amount of transcription to be determined. Transfections and primer extension reactions were internally controlled by simultaneous analysis of transcription from the adenovirus VA gene located on the same plasmid as the hybrid ckb/neo gene. We demonstrate that 195 bp of the ckb promoter is sufficient for efficient in vivo expression in HeLa cells. A nonconsensus TTAA element at -28 bp appears to provide the TATA box function for the ckb promoter in vivo. Two CCAAT elements, one at -84 bp and the other at -54 bp, and a TATAAA TA element (a consensus TATA box sequence) at -66 bp are required for efficient transcription from the TTAA element. In addition, we present evidence that the consensus beta-globin TATA box responds to the TATAAATA element in the same way as the ckb nonconsensus TTAA element.


1990 ◽  
Vol 10 (12) ◽  
pp. 6533-6543
Author(s):  
G M Hobson ◽  
G R Molloy ◽  
P A Benfield

The functional organization of the rat brain creatine kinase (ckb) promoter was analyzed by deletion, linker scanning, and substitution mutagenesis. Mutations were introduced into the ckb promoter of hybrid ckb/neo (neomycin resistance gene) genes, and the mutant genes were expressed transiently in HeLa cells. Expression was assayed by primer extension analysis of neo RNA, which allowed the transcription start sites and the amount of transcription to be determined. Transfections and primer extension reactions were internally controlled by simultaneous analysis of transcription from the adenovirus VA gene located on the same plasmid as the hybrid ckb/neo gene. We demonstrate that 195 bp of the ckb promoter is sufficient for efficient in vivo expression in HeLa cells. A nonconsensus TTAA element at -28 bp appears to provide the TATA box function for the ckb promoter in vivo. Two CCAAT elements, one at -84 bp and the other at -54 bp, and a TATAAA TA element (a consensus TATA box sequence) at -66 bp are required for efficient transcription from the TTAA element. In addition, we present evidence that the consensus beta-globin TATA box responds to the TATAAATA element in the same way as the ckb nonconsensus TTAA element.


2001 ◽  
Vol 114 (18) ◽  
pp. 3359-3366 ◽  
Author(s):  
Gary Davidson ◽  
Rosanna Dono ◽  
Rolf Zeller

To examine the potential role of fibroblast growth factor (FGF) signalling during cell differentiation, we used conditionally immortalised podocyte cells isolated from kidneys of Fgf2 mutant and wild-type mice. Wild-type mouse podocyte cells upregulate FGF2 expression when differentiating in culture, as do maturing podocytes in vivo. Differentiating wild-type mouse podocyte cells undergo an epithelial to mesenchymal-like transition, reorganise their actin cytoskeleton and extend actin-based cellular processes; all of these activities are similar to the activity of podocytes in vivo. Molecular analysis of Fgf2 mutant mouse podocyte cells reveals a general disruption of FGF signalling as expression of Fgf7 and Fgf10 are also downregulated. These FGF mutant mouse podocyte cells in culture fail to activate mesenchymal markers and their post-mitotic differentiation is blocked. Furthermore, mutant mouse podocyte cells in culture fail to reorganise their actin cytoskeleton and form actin-based cellular processes. These studies show that FGF signalling is required by cultured podocytes to undergo the epithelial to mesenchymal-like changes necessary for terminal differentiation. Together with other studies, these results point to a general role for FGF signalling in regulating cell differentiation and formation of actin-based cellular processes during morphogenesis.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Zhongming Chen

Background: Cell migration is an important step involved in heart regeneration and many cardiovascular diseases. However, cell migration dynamics in vivo is poorly understood due to the challenges from mammal hearts, which are opaque and fast beating, and thus individual cardiac cells cannot be imaged or tracked. Aims: In this study, cell migration dynamics in the heart is recorded with a novel strategy, in which fluorescence protein-tagged collagen is secreted from cells and deposited into extracellular matrix, forming visible trails when cells are moving in tissues. As a proof-of-concept, transplanted migration dynamics of cardiac progenitor cells in mouse hearts were investaged. Methods: Stable cell lines expressing mCherry-tagged type I collagen were generated from isolated cardiac progenitor cells, ABCG2 + CD45 - CD31 - cells (side populations), or c-kit + CD45 - CD31 - cells (c-kit + CPCs). The cell migration dynamics were monitored and measured based on the cell trails after cell transplantation into mouse tissues. Results: The stable cell lines form red cell trails both in vitro and in vivo (Fig. 1A & 1B, Green: GFP; Red: mCherry-collagen I, Blue: DAPI, bar: 50 microns). In culture dishes, the cells form visible cell trails of fluorescence protein. The cell moving directions are random, with a speed of 288 +/- 79 microns/day (side populations, n=3) or 143 +/-37 microns/day (c-kit + CPCs, n=3). After transplantation into wild-type mouse hearts, the cells form highly tortuous trails along the gaps between the heart muscle fibers. Angle between a cell trail and a muscle fiber is 16+/-16 degree (n=3). Side populations migrate twice as fast as c-kit+ CPCs in the heart (16.0 +/-8.7 microns/day vs. 8.1+/-0.0 microns/day, n=3, respectively), 18 time slower than the respective speeds in vitro . Additionally, side populations migrate significantly faster in the heart than in the skeletal muscles (26.4+/-5.8 microns/day, n=3). The side populations move significantly faster in immunodeficient mouse hearts (36.7+/-13.3 microns/day, n=3, typically used for studying cell therapies) than in wild-type mouse hearts. Conclusion: For the first time, cell migration dynamics in living hearts is monitored and examined with genetically modified cell lines. This study may greatly advance the fields of cardiovascular biology.


1991 ◽  
Vol 65 (4) ◽  
pp. 304-310 ◽  
Author(s):  
Ramesh C. Gupta ◽  
John T. Goad ◽  
Wade L. Kadel

2004 ◽  
Vol 279 (44) ◽  
pp. 45887-45896 ◽  
Author(s):  
Mark J. Demma ◽  
Serena Wong ◽  
Eugene Maxwell ◽  
Bimalendu Dasmahapatra

The p53 protein plays a major role in the maintenance of genome stability in mammalian cells. Mutations of p53 occur in over 50% of all cancers and are indicative of highly aggressive cancers that are hard to treat. Recently, there has been a high degree of interest in therapeutic approaches to restore growth suppression functions to mutant p53. Several compounds have been reported to restore wild type function to mutant p53. One such compound, CP-31398, has been shown effectivein vivo, but questions have arisen to whether it actually affects p53. Here we show that mutant p53, isolated from cells treated with CP-31398, is capable of binding to p53 response elementsin vitro. We also show the compound restores DNA-binding activity to mutant p53 in cells as determined by a chromatin immunoprecipitation assay. In addition, using purified p53 core domain from two different hotspot mutants (R273H and R249S), we show that CP-31398 can restore DNA-binding activity in a dose-dependent manner. Using a quantitative DNA binding assay, we also show that CP-31398 increases significantly the amount of mutant p53 that binds to cognate DNA (Bmax) and its affinity (Kd) for DNA. The compound, however, does not affect the affinity (Kdvalue) of wild type p53 for DNA and only increasesBmaxslightly. In a similar assay PRIMA1 does not have any effect on p53 core DNA-binding activity. We also show that CP-31398 had no effect on the DNA-binding activity of p53 homologs p63 and p73.


2016 ◽  
Vol 149 (1) ◽  
pp. 149-170 ◽  
Author(s):  
Anne C. Wolfes ◽  
Saheeb Ahmed ◽  
Ankit Awasthi ◽  
Markus A. Stahlberg ◽  
Ashish Rajput ◽  
...  

Interactions between astrocytes and neurons rely on the release and uptake of glial and neuronal molecules. But whether astrocytic vesicles exist and exocytose in a regulated or constitutive fashion is under debate. The majority of studies have relied on indirect methods or on astrocyte cultures that do not resemble stellate astrocytes found in vivo. Here, to investigate vesicle-associated proteins and exocytosis in stellate astrocytes specifically, we developed a simple, fast, and economical method for growing stellate astrocyte monocultures. This method is superior to other monocultures in terms of astrocyte morphology, mRNA expression profile, protein expression of cell maturity markers, and Ca2+ fluctuations: In astrocytes transduced with GFAP promoter–driven Lck-GCaMP3, spontaneous Ca2+ events in distinct domains (somata, branchlets, and microdomains) are similar to those in astrocytes co-cultured with other glia and neurons but unlike Ca2+ events in astrocytes prepared using the McCarthy and de Vellis (MD) method and immunopanned (IP) astrocytes. We identify two distinct populations of constitutively recycling vesicles (harboring either VAMP2 or SYT7) specifically in branchlets of cultured stellate astrocytes. SYT7 is developmentally regulated in these astrocytes, and we observe significantly fewer synapses in wild-type mouse neurons grown on Syt7−/− astrocytes. SYT7 may thus be involved in trafficking or releasing synaptogenic factors. In summary, our novel method yields stellate astrocyte monocultures that can be used to study Ca2+ signaling and vesicle recycling and dynamics in astrocytic processes.


1984 ◽  
Vol 4 (12) ◽  
pp. 2594-2609 ◽  
Author(s):  
C R Mueller ◽  
A M Mes-Masson ◽  
M Bouvier ◽  
J A Hassell

To define the DNA sequences required for the expression of the polyomavirus early transcription unit, we cloned part of the viral genome in a plasmid vector, isolated mutants bearing lesions introduced in vitro within DNA sequences upstream of the transcriptional start site, and measured the capacity of these various mutant genomes to transform cells and to function as templates for transcription in vitro by comparison with wild-type DNA. One set of mutants bore 5' unidirectional deletions beginning at position -810 and extending downstream to position +4. Another set of mutants bore 3' undirectional deletions starting at position +4 and progressing upstream to position -311. The last set of mutants bore internal deletions between positions -810 and +4. Analyses of the properties of these mutant DNAs led us to conclude that the region between positions -403 and -311 includes an enhancer of gene expression. Deletion of this area from the viral genome reduced gene expression in vivo to 1 to 2% of wild-type levels, as measured by transformation assays. Moreover, this region increased the frequency of transformation of thymidine kinase-negative Rat-2 cells by the herpes simplex virus thymidine kinase (tk) gene from 5- to 20-fold. This occurred only if the polyomavirus sequences were covalently linked to the tk gene and then occurred independently of their orientation or position relative to the tk gene. A second transcriptional element is located downstream of the enhancer between positions -311 and -213. This element together with the enhancer was sufficient to bring about transformation of Rat-1 cells at nearly wild-type frequencies, and together these elements constitute the minimal sequences required for gene expression in vivo. The sequences making up the second element may be functionally duplicated downstream of position -165 (between positions -165 and -60). This was revealed by the characterization of mutant genomes with deletions between positions -349 and -60. The role of these redundant elements is not known; however, they may be analogous to the 21-base-pair repeats of simian virus 40. Finally, sequences between positions -57 and -1 were required for accurate and efficient transcription in vitro. However, this DNA stretch, which includes the TATA box and major transcriptional start sites, was not absolutely required for gene expression in vivo. We conclude that the polyomavirus promoter comprises multiple functional elements which are distributed across a DNA stretch of about 400 base pairs.


Sign in / Sign up

Export Citation Format

Share Document