FGF signalling is required for differentiation-induced cytoskeletal reorganisation and formation of actin-based processes by podocytes

2001 ◽  
Vol 114 (18) ◽  
pp. 3359-3366 ◽  
Author(s):  
Gary Davidson ◽  
Rosanna Dono ◽  
Rolf Zeller

To examine the potential role of fibroblast growth factor (FGF) signalling during cell differentiation, we used conditionally immortalised podocyte cells isolated from kidneys of Fgf2 mutant and wild-type mice. Wild-type mouse podocyte cells upregulate FGF2 expression when differentiating in culture, as do maturing podocytes in vivo. Differentiating wild-type mouse podocyte cells undergo an epithelial to mesenchymal-like transition, reorganise their actin cytoskeleton and extend actin-based cellular processes; all of these activities are similar to the activity of podocytes in vivo. Molecular analysis of Fgf2 mutant mouse podocyte cells reveals a general disruption of FGF signalling as expression of Fgf7 and Fgf10 are also downregulated. These FGF mutant mouse podocyte cells in culture fail to activate mesenchymal markers and their post-mitotic differentiation is blocked. Furthermore, mutant mouse podocyte cells in culture fail to reorganise their actin cytoskeleton and form actin-based cellular processes. These studies show that FGF signalling is required by cultured podocytes to undergo the epithelial to mesenchymal-like changes necessary for terminal differentiation. Together with other studies, these results point to a general role for FGF signalling in regulating cell differentiation and formation of actin-based cellular processes during morphogenesis.

2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Zhongming Chen

Background: Cell migration is an important step involved in heart regeneration and many cardiovascular diseases. However, cell migration dynamics in vivo is poorly understood due to the challenges from mammal hearts, which are opaque and fast beating, and thus individual cardiac cells cannot be imaged or tracked. Aims: In this study, cell migration dynamics in the heart is recorded with a novel strategy, in which fluorescence protein-tagged collagen is secreted from cells and deposited into extracellular matrix, forming visible trails when cells are moving in tissues. As a proof-of-concept, transplanted migration dynamics of cardiac progenitor cells in mouse hearts were investaged. Methods: Stable cell lines expressing mCherry-tagged type I collagen were generated from isolated cardiac progenitor cells, ABCG2 + CD45 - CD31 - cells (side populations), or c-kit + CD45 - CD31 - cells (c-kit + CPCs). The cell migration dynamics were monitored and measured based on the cell trails after cell transplantation into mouse tissues. Results: The stable cell lines form red cell trails both in vitro and in vivo (Fig. 1A & 1B, Green: GFP; Red: mCherry-collagen I, Blue: DAPI, bar: 50 microns). In culture dishes, the cells form visible cell trails of fluorescence protein. The cell moving directions are random, with a speed of 288 +/- 79 microns/day (side populations, n=3) or 143 +/-37 microns/day (c-kit + CPCs, n=3). After transplantation into wild-type mouse hearts, the cells form highly tortuous trails along the gaps between the heart muscle fibers. Angle between a cell trail and a muscle fiber is 16+/-16 degree (n=3). Side populations migrate twice as fast as c-kit+ CPCs in the heart (16.0 +/-8.7 microns/day vs. 8.1+/-0.0 microns/day, n=3, respectively), 18 time slower than the respective speeds in vitro . Additionally, side populations migrate significantly faster in the heart than in the skeletal muscles (26.4+/-5.8 microns/day, n=3). The side populations move significantly faster in immunodeficient mouse hearts (36.7+/-13.3 microns/day, n=3, typically used for studying cell therapies) than in wild-type mouse hearts. Conclusion: For the first time, cell migration dynamics in living hearts is monitored and examined with genetically modified cell lines. This study may greatly advance the fields of cardiovascular biology.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1707-1707
Author(s):  
Giovanni Migliaccio ◽  
Barbara Ghinassi ◽  
Lucia Centurione ◽  
Maria Zingariello ◽  
Lucia Bianchi ◽  
...  

Abstract Megakaryocytopoiesis is regulated by extrinsic (interaction of the growth factor thrombopoietin, TPO with its receptor Mpl) and intrinsic (interaction between the trascription factors GATA-1 and Fog-1) factors. The observation that mice impaired for GATA-1 expression (i.e. harbouring the GATA-1low mutation) are defective not only in megakaryocyte maturation but also in mast cell differentiation (Migliaccio et al. J Exp Med197:281, 2003), led us to investigate whether TPO might control mast cell differentiation as well. We first observed that mice genetically unable to responde to TPO (Mplnull mice) express in the connective tissues 5 times more mast cells than their normal littermates. Then, we analysed the effects on mast cell differentiation of in vivo treatment with TPO. Normal mice, and their GATA-1low littermates, were injected i.p. with TPO (100 μg/kg/day per 5 days, kindly provided by Kirin Brewery, Japan) and the number of immature (Toluidinepos) and mature (AlcianBlue/Saphraninepos) mast cells present in the connective tissues of the animals, as well as the frequency of GATA-1pos and TUNELpos mast cells, was evaluated 14 days after treatment. In wild-type animals, TPO reduced the presence of GATA-1 in mast cells (by immuno-histochemistry) and increased the number of immature cells (from 320±28 to 852±60) and of those undergoing apoptosis (from 16±1 to 600±43). In contrast, in GATA-1low animals, TPO-treatment induced the expression of GATA-1 in mast cells while decreased the number of immature cells (from 1100±72 to 427±29) as well as that of apoptotic cells (from 600±45 to 60±2). The role of TPO on mast cell differentiation were further confirmed by the analysis of the effects exerted by the growth factor on in vitro differentiation of bone marrow derived mast cells (BMMC). In these experiments, wild type bone marrow and spleen cells were cultured for 21 days with SCF and IL-3 with or without TPO and BMMC differentiation measured on the basis of the number of cells expressing the phenotype c-kithigh/CD34high and FcεRIpos. In cultures stimulated with SCF and IL-3, all the cells expressed the phenotype c-kithigh/CD34high and FcεRIpos. In contrast, in cultures supplemented also with SCF, IL-3 and TPO, only 25% of the cells were c-kithigh/CD34high and none of them was FcεRIpos. These results establish a role for TPO in the control of mast cell differentiation (possibly by modulating the GATA-1 content of the cells) and unveil further similarities between the mechanism(s) controlling megakaryocyte and mast cell differentiation.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 115-115
Author(s):  
Andrew A. Lane ◽  
Diederik van Bodegom ◽  
Bjoern Chapuy ◽  
Gabriela Alexe ◽  
Timothy J Sullivan ◽  
...  

Abstract Abstract 115 Extra copies of chromosome 21 (polysomy 21) is the most common somatic aneuploidy in B-cell acute lymphoblastic leukemia (B-ALL), including >90% of cases with high hyperdiploidy. In addition, children with Down syndrome (DS) have a 20-fold increased risk of developing B-ALL, of which ∼60% harbor CRLF2 rearrangements. To examine these associations within genetically defined models, we investigated B-lineage phenotypes in Ts1Rhr mice, which harbor triplication of 31 genes syntenic with the DS critical region (DSCR) on human chr.21. Murine pro-B cell (B220+CD43+) development proceeds sequentially through “Hardy fractions” defined by cell surface phenotype: A (CD24−BP-1−), B (CD24+BP-1−) and then C (CD24+BP-1+). Compared with otherwise isogenic wild-type littermates, Ts1Rhr bone marrow harbored decreased percentages of Hardy fraction B and C cells, indicating that DSCR triplication is sufficient to disrupt the Hardy A-to-B transition. Of note, the same phenotype was reported in human DS fetal liver B-cells, which have a block between the pre-pro- and pro-B cell stages (analogous to Hardy A-to-B). To determine whether DSCR triplication affects B-cell proliferation in vitro, we analyzed colony formation and serial replating in methylcellulose cultures. Ts1Rhr bone marrow (B6/FVB background) formed 2–3-fold more B-cell colonies in early passages compared to bone marrow from wild-type littermates. While wild-type B-cells could not serially replate beyond 4 passages, Ts1Rhr B-cells displayed indefinite serial replating (>10 passages). Ts1Rhr mice do not spontaneously develop leukemia, so we utilized two mouse models to determine whether DSCR triplication cooperates with leukemogenic oncogenes in vivo. First, we generated Eμ-CRLF2 F232C mice, which express the constitutively active CRLF2 mutant solely within B-cells. Like Ts1Rhr B-cells, (but not CRLF2 F232C B-cells) Ts1Rhr/CRLF2 F232C cells had indefinite serial replating potential. In contrast with Ts1Rhr B-cells, Ts1Rhr/CRLF2 F232C B-cells also engrafted into NOD.Scid.IL2Rγ−/− mice and caused fatal and serially transplantable B-ALL. Second, we retrovirally transduced BCR-ABL1 into unselected bone marrow from wild-type and Ts1Rhr mice and transplanted into irradiated wild-type recipients. Transplantation of transduced Ts1Rhr cells (106, 105, or 104) caused fatal B-ALL in recipient mice with shorter latency and increased penetrance compared to recipients of the same number of transduced wild-type cells. By Poisson calculation, the number of B-ALL initiating cells in transduced Ts1Rhr bone marrow was ∼4-fold higher than in wild-type animals (1:60 vs 1:244, P=0.0107). Strikingly, transplantation of individual Hardy A, B, and C fractions after sorting and BCR-ABL1 transduction demonstrated that the increased leukemia-initiating capacity almost completely resides in the Ts1Rhr Hardy B fraction; i.e., the same subset suppressed during Ts1Rhr B-cell differentiation. To define transcriptional determinants of these phenotypes, we performed RNAseq of Ts1Rhr and wild-type B cells in methylcellulose culture (n=3 biologic replicates per genotype). As expected, Ts1Rhr colonies had ∼1.5-fold higher RNA abundance of expressed DSCR genes. We defined a Ts1Rhr signature of the top 200 genes (false discovery rate (FDR) <0.25) differentially expressed compared with wild-type cells. Importantly, this Ts1Rhr signature was significantly enriched (P=0.02) in a published gene expression dataset of DS-ALL compared with non-DS-ALL (Hertzberg et al., Blood 2009). Query of >2,300 signatures in the Molecular Signatures Database (MSigDB) C2 Chemical and Genetic Perturbations with the Ts1Rhr signature identified enrichment in multiple gene sets of polycomb repressor complex (PRC2) targets and H3K27 trimethylation. Most notably, SUZ12 targets within human embryonic stem cells were more highly expressed in Ts1Rhr cells (P=1.2×10−6, FDR=0.003) and the same SUZ12 signature was enriched in patients with DS-ALL compared to non-DS-ALL (P=0.007). In summary, DSCR triplication directly suppresses precursor B-cell differentiation and promotes B-cell transformation both in vitro and by cooperating with proliferative alterations such as CRLF2 activation and BCR-ABL1 in vivo. Pharmacologic modulation of H3K27me3 effectors may overcome the pro-leukemogenic effects of polysomy 21. Disclosures: No relevant conflicts of interest to declare.


2016 ◽  
Vol 149 (1) ◽  
pp. 149-170 ◽  
Author(s):  
Anne C. Wolfes ◽  
Saheeb Ahmed ◽  
Ankit Awasthi ◽  
Markus A. Stahlberg ◽  
Ashish Rajput ◽  
...  

Interactions between astrocytes and neurons rely on the release and uptake of glial and neuronal molecules. But whether astrocytic vesicles exist and exocytose in a regulated or constitutive fashion is under debate. The majority of studies have relied on indirect methods or on astrocyte cultures that do not resemble stellate astrocytes found in vivo. Here, to investigate vesicle-associated proteins and exocytosis in stellate astrocytes specifically, we developed a simple, fast, and economical method for growing stellate astrocyte monocultures. This method is superior to other monocultures in terms of astrocyte morphology, mRNA expression profile, protein expression of cell maturity markers, and Ca2+ fluctuations: In astrocytes transduced with GFAP promoter–driven Lck-GCaMP3, spontaneous Ca2+ events in distinct domains (somata, branchlets, and microdomains) are similar to those in astrocytes co-cultured with other glia and neurons but unlike Ca2+ events in astrocytes prepared using the McCarthy and de Vellis (MD) method and immunopanned (IP) astrocytes. We identify two distinct populations of constitutively recycling vesicles (harboring either VAMP2 or SYT7) specifically in branchlets of cultured stellate astrocytes. SYT7 is developmentally regulated in these astrocytes, and we observe significantly fewer synapses in wild-type mouse neurons grown on Syt7−/− astrocytes. SYT7 may thus be involved in trafficking or releasing synaptogenic factors. In summary, our novel method yields stellate astrocyte monocultures that can be used to study Ca2+ signaling and vesicle recycling and dynamics in astrocytic processes.


2006 ◽  
Vol 74 (12) ◽  
pp. 6839-6846 ◽  
Author(s):  
Ge Wang ◽  
Yang Hong ◽  
Adriana Olczak ◽  
Susan E. Maier ◽  
Robert J. Maier

ABSTRACT Neutrophil-activating protein (NapA) has been well documented to play roles in human neutrophil recruitment and in stimulating host cell production of reactive oxygen intermediates (ROI). A separate role for NapA in combating oxidative stress within H. pylori was implied by studies of various H. pylori mutant strains. Here, physiological analysis of a napA strain was the approach used to assess the iron-sequestering and stress resistance roles of NapA, its role in preventing oxidative DNA damage, and its importance to mouse colonization. The napA strain was more sensitive to oxidative stress reagents and to oxygen, and it contained fourfold more intracellular free iron and more damaged DNA than the parent strain. Pure, iron-loaded NapA bound to DNA, but native NapA did not, presumably linking iron levels sensed by NapA to DNA damage protection. Despite its in vitro phenotype of sensitivity to oxidative stress, the napA strain showed normal (like that of the wild type) mouse colonization efficiency in the conventional in vivo assay. By use of a modified mouse inoculation protocol whereby nonviable H. pylori is first inoculated into mice, followed by (live) bacterial strain administration, an in vivo role for NapA in colonization efficiency could be demonstrated. NapA is the critical component responsible for inducing host-mediated ROI production, thus inhibiting colonization by the napA strain. An animal colonization experiment with a mixed-strain infection protocol further demonstrated that the napA strain has significantly decreased ability to survive when competing with the wild type. H. pylori NapA has unique and separate roles in gastric pathogenesis.


1998 ◽  
Vol 88 (6) ◽  
pp. 1535-1548 ◽  
Author(s):  
Stuart A. Forman ◽  
Douglas E. Raines

Background Nonanesthetic volatile compounds fail to inhibit movement in response to noxious stimulation at concentrations predicted to induce anesthesia from their oil-water partitioning. Thus they represent tools to determine whether molecular models behave like the targets that mediate in vivo anesthetic actions. The effects of volatile anesthetics and nonanesthetics were examined in two experimental models in which anesthetics interact directly with proteins: the pore of the nicotinic acetylcholine receptor and human serum albumin. Methods Wild-type mouse muscle nicotinic receptors and receptors containing pore mutations (alphaS252I + betaT263I) were studied electrophysiologically in membrane patches from Xenopus oocytes. Patch currents evoked by brief pulses of acetylcholine were measured in the presence of enflurane and two nonanesthetics, 1,2-dichlorohexafluorocyclobutane and 2,3-dichlorooctafluorobutane. Nonanesthetic interactions with human serum album were assessed by quenching of intrinsic protein fluorescence. Results Both anesthetic and nonanesthetic volatile compounds inhibited wild-type and alphaS252I + betaT263I mutant nicotinic channels but displayed different selectivity for open versus resting receptor states. Median inhibitory concentrations (IC50s) in wild-type nicotinic receptors were 870+/-20 microM for enflurane, 37+/-3 microM for 1,2-dichlorohexafluorocylcobutane, and 11.3+/-5.6 microM for 2,3-dichlorooctafluorobutane. For all three drugs, ratios of wild-type IC50s to mutant IC50mut ranged from 7-10, and ratios of wild-type IC50s to predicted anesthetic median effective concentrations (EC50s) ranged from 1.8-2.3. 1,2-Dichlorohexafluorocyclobutane quenched human serum albumin with an apparent dissociation constant (Kd) of 160+/-11 microM. The ratios of dissociation constants to predicted EC50s for the nonanesthetics were within a factor of two of the dissociation constant:EC50 ratios calculated for halothane and chloroform from previous published results. Conclusions In two models in which anesthetics bind to protein sites, both anesthetic and nonanesthetic volatile drugs cause similar steady state effects with potencies that are predicted by hydrophobicity. These protein sites do not sterically discriminate between anesthetic and nonanesthetic drugs. However, differential state-selective actions on ion channel targets may underlie the distinct in vivo effects of anesthetics and nonanesthetics.


Author(s):  
Wenyan He ◽  
Ying Zhang ◽  
Zhan Cao ◽  
Zehua Ye ◽  
Xun Lu ◽  
...  

The first adult repopulating hematopoietic stem cells (HSCs) are found in the aorta-gonad-mesonephros (AGM) region, which are produced from hemogenic endothelial cells. Embryonic head is the other site for HSC development. Wild-type p53-induced phosphatase 1 (Wip1) is a type-2Cδ family serine/threonine phosphatase involved in various cellular processes such as lymphoid development and differentiation of adult HSCs. Most recently, we have shown that Wip1 modulates the pre-HSC maturation in the AGM region. However, it is not clear whether Wip1 regulates hematopoiesis in the embryonic head. Here we reported that disruption of Wip1 resulted in a decrease of hematopoietic progenitor cell number in the embryonic head. In vivo transplantation assays showed a reduction of HSC function after Wip1 ablation. We established that Wip1 deletion reduced the frequency and cell number of microglia in the embryonic head. Further observations revealed that Wip1 absence enhanced the gene expression of microglia-derived pro-inflammatory factors. Thus, it is likely that Wip1 functions as a positive regulator in HSC development by regulating the function of microglia in the embryonic head.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Yasir S Elhassan ◽  
Ali Kabli ◽  
Thomas Nielsen ◽  
Rachel Fletcher ◽  
Lucy Oakey ◽  
...  

Abstract 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) is an NADPH-dependant reductase located in the sarcoplasmic reticulum (SR) lumen of skeletal muscle. It generates active glucocorticoids to regulate permissive and adaptive metabolism and contributes to the development of the Cushing’s syndrome phenotype in mice receiving oral corticosterone. The SR enzyme hexose-6-phosphate dehydrogenase (H6PDH) generates NADPH which supports 11β-HSD1 activity. H6PDH depletion disrupts the SR NADPH/NADP ratio leading 11β-HSD1 to assume glucocorticoid-inactivating dehydrogenase activity. Little is understood regarding routes to NAD(P)(H) biosynthesis and metabolism in the SR. Here we asked whether modulating cellular nicotinamide adenine dinucleotide (NAD+) availability (the parent molecule of NAD(P)(H)) would influence muscle 11β-HSD1 activity given its sensitivity to the SR NADPH/NADP ratio. We used FK866 to inhibit nicotinamide phospho-ribosyltransferase (NAMPT, rate-limiting enzyme in NAD+ biosynthesis) to deplete NAD(P)(H) in wild type mouse primary myotubes. FK866 treatment for 48h impaired cellular energetic status, reducing NAD+ (&gt;90%), NADP+ (&gt;50%) and ATP (&gt;30%) without limiting cell viability. 11β-HSD1 reductase activity was decreased to 30% that of untreated cells (152±18 vs. 512±44 pmol/mg protein/h respectively, p&lt;0.005). Employing H6PD knockout myotubes, NADP+-dependent 11β-HSD1 dehydrogenase activity was also impaired following NAMPT inhibition. The NAD+ precursor nicotinamide riboside (NR, 0.5mM), which bypasses NAMPT inhibition through the NR kinase pathway restored NAD+ levels and rapidly rescued 11β-HSD1 reductase activity in wild type and dehydrogenase activity in H6PD knockout myotubes. To assess this in vivo, we examined 11β-HSD1 reductase activity in muscle explants of inducible muscle-specific NAMPT knockout mice in which NAD+ levels are reduced by 90%, and show 40% lower activity compared to wild type explants (114±14 vs. 67±10 pmol/mg protein/h, p=0.04). These data suggest a novel level of redox-regulated 11β-HSD1-mediated glucocorticoid metabolism in skeletal muscle. These data also imply a pathway by which NAD+ status is communicated between the cytosol and the SR, which is contrary to the current belief that the pyridine nucleotide pool in these compartments is separate. NAMPT inhibition is being studied as a potential anti-cancer therapy and these data reveal hitherto unanticipated effects this therapy may have in a range of tissues.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3876-3876
Author(s):  
Bryan N. Kahner ◽  
Robert T. Dorsam ◽  
Satya P. Kunapuli

Abstract Microparticles are shed from the platelet membrane upon platelet activation, and they contain negatively charged phospholipids such as phosphatidylserine (PS) on their membrane that bind to coagulation factors and aid in clot formation. While the procoagulant nature of microparticles is clear, the relative contributions of platelet agonists to microparticle formation leading to a thrombus are still unclear. Because secreted ADP from the dense granules has been shown to potentiate granule release, GPIIb/IIIa activation, and platelet thrombin generation, we studied the effect of antagonizing the P2Y1 and P2Y12 receptors on microparticle formation from platelets that are stimulated with convulxin and thrombin. It has been previously shown that a deficiency in the P2Y12 receptor causes an increase in bleeding time, and we found prolonged bleeding times with P2Y1 knockout mice when compared to the wild type mice. Because microparticles are a part of the hemostatic process, we set out to see if there was a contribution of the P2Y receptors on agonist-induced platelet microparticle formation. Flow cytometry was used to measure microparticle formation in human blood in the presence or absence of P2Y1 or P2Y12 receptor antagonists. In addition, we measured agonist-induced microparticle formation in wild type mouse blood and compared the microparticle formation to P2Y1 knockout mouse blood microparticle. Using human blood stimulated with thrombin and convulxin we observed a decrease in microparticle count when administering the P2Y1 antagonist MRS2179 by 17%, and the P2Y12 antagonist AR-C69931MX by 28%. Furthermore, there was a decrease in microparticle formation in P2Y1 knockout mouse blood when compared to the wild type mouse microparticle formation by 13%. These results illustrate that both of the P2Y1 and P2Y12 receptors play an intricate role in microparticle formation in vivo, and may be one more effect underlying the extended bleeding times of patients deficient in the P2Y12 receptor or for the slightly increased bleeding of those taking the P2Y12 receptor antagonist clopidogrel.


Sign in / Sign up

Export Citation Format

Share Document