Activation of the granulocyte-macrophage colony-stimulating factor promoter in T cells requires cooperative binding of Elf-1 and AP-1 transcription factors

1994 ◽  
Vol 14 (2) ◽  
pp. 1153-1159
Author(s):  
C Y Wang ◽  
A G Bassuk ◽  
L H Boise ◽  
C B Thompson ◽  
R Bravo ◽  
...  

The granulocyte-macrophage colony-stimulating factor (GM-CSF) gene has been studied extensively as a model system of transcriptional induction during T-lymphocyte activation. The GM-CSF gene is not expressed in resting peripheral blood T cells but is rapidly induced at the transcriptional level following activation through the cell surface T-cell receptor. A highly conserved 19-bp element located immediately 5' of the human GM-CSF TATA box (bp -34 to -52), herein called purine box 1 (PB1), has been shown to bind a T-cell nuclear protein complex and to be required for transcriptional induction of the GM-CSF gene following T-cell activation. The PB1 sequence motif is highly conserved in both human and murine GM-CSF genes. In this report, we demonstrate that the PB1 element alone confers inducibility on a heterologous promoter following transfection into human Jurkat T cells. In addition, we identify a major PB1 nuclear protein-binding complex that is not present in resting peripheral blood T cells but is rapidly induced following T-cell activation. Sequence analysis revealed that PB1 is composed of adjacent binding sites for Ets and AP-1 transcription factors. In vitro mutagenesis experiments demonstrated that both the Ets and AP-1 sites are required for binding of the inducible PB1 nuclear protein complex and for the transcriptional activity of this element and the GM-CSF promoter in activated T cells. Using antibodies specific for different Ets and AP-1 family members, we demonstrate that the major inducible PB1-binding activity present in activated T-cell nuclear extracts is composed of the Elf-1, c-Fos, and JunB transcription factors. Taken together, these results suggest that cooperative interactions between specific Ets and AP-1 family members are important in regulating inducible gene expression following T-cell activation.

1994 ◽  
Vol 14 (2) ◽  
pp. 1153-1159 ◽  
Author(s):  
C Y Wang ◽  
A G Bassuk ◽  
L H Boise ◽  
C B Thompson ◽  
R Bravo ◽  
...  

The granulocyte-macrophage colony-stimulating factor (GM-CSF) gene has been studied extensively as a model system of transcriptional induction during T-lymphocyte activation. The GM-CSF gene is not expressed in resting peripheral blood T cells but is rapidly induced at the transcriptional level following activation through the cell surface T-cell receptor. A highly conserved 19-bp element located immediately 5' of the human GM-CSF TATA box (bp -34 to -52), herein called purine box 1 (PB1), has been shown to bind a T-cell nuclear protein complex and to be required for transcriptional induction of the GM-CSF gene following T-cell activation. The PB1 sequence motif is highly conserved in both human and murine GM-CSF genes. In this report, we demonstrate that the PB1 element alone confers inducibility on a heterologous promoter following transfection into human Jurkat T cells. In addition, we identify a major PB1 nuclear protein-binding complex that is not present in resting peripheral blood T cells but is rapidly induced following T-cell activation. Sequence analysis revealed that PB1 is composed of adjacent binding sites for Ets and AP-1 transcription factors. In vitro mutagenesis experiments demonstrated that both the Ets and AP-1 sites are required for binding of the inducible PB1 nuclear protein complex and for the transcriptional activity of this element and the GM-CSF promoter in activated T cells. Using antibodies specific for different Ets and AP-1 family members, we demonstrate that the major inducible PB1-binding activity present in activated T-cell nuclear extracts is composed of the Elf-1, c-Fos, and JunB transcription factors. Taken together, these results suggest that cooperative interactions between specific Ets and AP-1 family members are important in regulating inducible gene expression following T-cell activation.


1990 ◽  
Vol 10 (3) ◽  
pp. 1281-1286 ◽  
Author(s):  
R Schreck ◽  
P A Baeuerle

The expression of the gene encoding the granulocyte-macrophage colony-stimulating factor (GM-CSF) is induced upon activation of T cells with phytohemagglutinin and active phorbolester and upon expression of tax1, a transactivating protein of the human T-cell leukemia virus type I. The same agents induce transcription from the interleukin-2 receptor alpha-chain and interleukin-2 genes, depending on promoter elements that bind the inducible transcription factor NF-kappa B (or an NF-kappa B-like factor). We therefore tested the possibility that the GM-CSF gene is also regulated by a cognate motif for the NF-kappa B transcription factor. A recent functional analysis by Miyatake et al. (S. Miyatake, M. Seiki, M. Yoshida, and K. Arai, Mol. Cell. Biol. 8:5581-5587, 1988) described a short promoter region in the GM-CSF gene that conferred strong inducibility by T-cell-activating signals and tax1, but no NF-kappa B-binding motifs were identified. Using electrophoretic mobility shift assays, we showed binding of purified human NF-kappa B and of the NF-kappa B activated in Jurkat T cells to an oligonucleotide comprising the GM-CSF promoter element responsible for mediating responsiveness to T-cell-activating signals and tax1. As shown by a methylation interference analysis and oligonucleotide competition experiments, purified NF-kappa B binds at positions -82 to -91 (GGGAACTACC) of the GM-CSF promoter sequence with an affinity similar to that with which it binds to the biologically functional kappa B motif in the beta interferon promoter (GGGAAATTCC). Two kappa B-like motifs at positions -98 to -108 of the GM-CSF promoter were also recognized but with much lower affinities. Our data provide strong evidence that the expression of the GM-CSF gene following T-cell activation is controlled by binding of the NF-kappa B transcription factor to a high-affinity binding site in the GM-CSF promoter.


mBio ◽  
2017 ◽  
Vol 8 (6) ◽  
Author(s):  
Richard T. Robinson

ABSTRACT Although classically associated with myelopoiesis, granulocyte-macrophage colony-stimulating factor (GM-CSF) is increasingly recognized as being important for tuberculosis (TB) resistance. GM-CSF is expressed by nonhematopoietic and hematopoietic lineages following infection with Mycobacterium tuberculosis and is necessary to restrict M. tuberculosis growth in experimental models. Until the recent study by Rothchild et al. (mBio 8:e01514-17, 2017, https://doi.org/10.1128/mBio.01514-17 !), it was unknown whether GM-CSF-producing T cells contribute to TB resistance. Rothchild et al. identify which conventional and nonconventional T cell subsets produce GM-CSF during experimental TB, establish their protective nature using a variety of approaches, and provide a mechanistic basis for their ability to restrict M. tuberculosis growth. This commentary discusses the significance of these findings to basic and applied TB research. As translated to human disease, these findings suggest vaccine-mediated expansion of GM-CSF-producing T cells could be an effective prophylactic or therapeutic TB strategy.


Blood ◽  
1994 ◽  
Vol 83 (3) ◽  
pp. 713-723
Author(s):  
AM Stewart-Akers ◽  
JS Cairns ◽  
DJ Tweardy ◽  
SA McCarthy

The effects of granulocyte-macrophage colony-stimulating factor (GM- CSF) are not confined to cells of the myeloid lineage. GM-CSF has been shown to have effects on mature T cells and both mature and immature T- cell lines. We therefore examined the GM-CSF responsiveness of murine thymocytes to investigate whether GM-CSF also affected normal immature T lymphocytes. The studies presented here indicate that GM-CSF augments accessory cell (AC)-dependent T-cell receptor (TCR)-mediated proliferation of unseparated thymocyte populations. To identify the GM- CSF responsive cell type, thymic AC and T cells were examined for GM- CSF responsiveness. We found that GM-CSF augmentation of TCR-induced thymocyte proliferation appears to be mediated via augmentation of AC function, and not via direct effects on mature single-positive (SP) thymocytes. Enriched double-negative (DN) thymocytes were also tested for GM-CSF responsiveness. GM-CSF induced the proliferation of adult and fetal DN thymocytes in an AC-independent and TCR-independent single- cell assay. Thus, in contrast to the SP thymocytes, a DN thymocyte population was directly responsive to GM-CSF. GM-CSF therefore may play a direct role in the expansion of DN thymocytes and an indirect role in the expansion of SP thymocytes.


Blood ◽  
1994 ◽  
Vol 83 (5) ◽  
pp. 1299-1309
Author(s):  
A al-Aoukaty ◽  
A Giaid ◽  
C Sinoff ◽  
AD Ho ◽  
AA Maghazachi

In addition to the mobilization of neutrophils and monocytes, granulocyte-macrophage colony-stimulating factor (GM-CSF) also mobilizes lymphocytes into peripheral blood. We examined the ability of GM-CSF to induce the proliferation of purified human T cells (CD3+ CD4+ CD56- CD16- B1- MO2-) in two major aspects: (1) the mechanisms of GM- CSF interaction with interleukin-2 (IL-2) causing T-cell proliferation, and (2) the intracellular signals transmitted by GM-CSF in T lymphocytes. We observed that concentrations of GM-CSF between 0.01 ng/mL and 10 ng/mL had a synergistic effect with concentrations of IL-2 between 1 U/mL and 10 U/mL in stimulating T-cell proliferation. This effect of GM-CSF was maximal when it was added at the start of the culture. In situ hybridization showed the presence of mRNA for GM-CSF receptors in T cells. Further analysis showed that GM-CSF induced the expression of IL-2 receptor (IL-2R) on the surface of T lymphocytes. These events coincide with the ability of GM-CSF to increase the intracellular levels of both cyclic 3′,5′-adenosine monophosphate (cAMP) and cyclic 3′,5′-guanosine monophosphate (cGMP) in T cells, to increase the binding of (gamma-35S) GTP to T-cell membranes, and to enhance GTPase activity as determined by increased hydrolysis of 32P- GTP. IL-2 also induced IL-2R expression, cyclic nucleotide secretion, and G-protein activation. However, the presence of IL-2 reduced GM-CSF induction of these activities. Addition of antibodies to the alpha and beta subunits of IL-2R permitted the activation of G protein by GM-CSF even when IL-2 was present. Furthermore, GTP binding and GTPase activity induced by GM-CSF or IL-2 were inhibited by the addition of cholera toxin (CT), but not pertussis toxin (PT). Cumulatively, these results suggest that in T lymphocytes, receptors for GM-CSF or IL-2 may be coupled to the same CT-sensitive G protein, although other possibilities may exist. The role that G proteins play in mediating the intracellular signaling pathways induced by GM-CSF or IL-2 in human T cells is supported by adenosine diphosphate-ribosylation of a 44-kD or a 39-kD G protein in T-cell membranes by CT and PT, respectively.


2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 2508-2508 ◽  
Author(s):  
L. Fong ◽  
B. Kavanagh ◽  
B. I. Rini ◽  
V. Shaw ◽  
V. Weinberg ◽  
...  

2508 Background: CTLA-4 is an costimulatory molecule expressed on activated T cells that delivers an inhibitory signal to these T cells. CTLA-4 blockade with antibody treatment augments T cell responses and anti-tumor immunity in animal models. Clinical trials with anti-CTLA-4 antibody treatment have demonstrated clinical responses in different malignancies including melanoma and hormone-refractory prostate cancer (HRPC). We have also shown that administration of granulocyte-macrophage colony-stimulating factor (GM-CSF) can also induce PSA declines in HRPC patients, presumably through enhancing presentation of endogenous antigens. The current study examines whether combining systemic GM-CSF to CTLA-4 blockade can augment immune and/or clinical responses in HRPC patients. Methods: In a phase I trial of patients with metastatic HRPC, sequential cohorts of 3–6 patients received GM-CSF (sargramostim, Berlex) 250 mg/m2/d SC on days 1–14 of a 28-day cycle with escalating doses (0.5, 1.5 or 3 mg/kg) of ipilimumab (MDX-010), a fully human anti-CTLA antibody (Medarex/BMS), given IV on day 1 of each cycle x 4 cycles. Patients were monitored for toxicity as well as for T cell activation. PSA and radiographic tests were performed at baseline and through therapy to evaluate for clinical response. Results: 18 patients were accrued. Ipilimumab-related dose-limiting toxicity was limited to one patient with grade 3 rash at the 3 mg/kg priming dose level. Seven patients had <50% declines in their serum PSA levels. A dose response relationship was seen between ipilimumab dose and activation of both CD4 and CD8 T cells in the blood. These effects were increased compared to effects seen with ipilimumab treatment alone in prior studies. Interferon-gamma production and lytic activity were also enhanced in circulating antigen-specific CD8+ T cells by the combination. Conclusions: GM-CSF may enhance T cell activation induced by CTLA-4 blockade. With increasing doses of anti-CTLA-4, both CD4 and CD8 T cell activation can be detected in the blood, consistent with a dose-response relationship. Supported by the UCSF Prostate SPORE NIH P50 CA89520. No significant financial relationships to disclose.


1993 ◽  
Vol 13 (12) ◽  
pp. 7399-7407
Author(s):  
E S Masuda ◽  
H Tokumitsu ◽  
A Tsuboi ◽  
J Shlomai ◽  
P Hung ◽  
...  

Expression of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene in T cells is activated by the combination of phorbol ester (phorbol myristate acetate) and calcium ionophore (A23187), which mimic antigen stimulation through the T-cell receptor. We have previously shown that a fragment containing bp -95 to +27 of the mouse GM-CSF promoter can confer inducibility to reporter genes in the human Jurkat T-cell line. Here we use an in vitro transcription system to demonstrate that a cis-acting element (positions -54 to -40), referred to as CLE0, is a target for the induction signals. We observed induction with templates containing intact CLE0 but not with templates with deleted or mutated CLE0. We also observed that two distinct signals were required for the stimulation through CLE0, since only extracts from cells treated with both phorbol myristate acetate and A23187 supported optimal induction. Stimulation probably was mediated by CLE0-binding proteins because depletion of these proteins specifically reduced GM-CSF transcription. One of the binding factors possessed biochemical and immunological features identical to those of the transcription factor AP1. Another factor resembled the T-cell-specific factor NFAT. The characteristics of these two factors are consistent with their involvement in GM-CSF induction. The presence of CLE0-like elements in the promoters of interleukin-3 (IL-3), IL-4, IL-5, GM-CSF, and NFAT sites in the IL-2 promoter suggests that the factors we detected, or related factors that recognize these sites, may account for the coordinate induction of these genes during T-cell activation.


2003 ◽  
Vol 197 (4) ◽  
pp. 413-423 ◽  
Author(s):  
Adele F. Holloway ◽  
Sudha Rao ◽  
Xinxin Chen ◽  
M. Frances Shannon

Granulocyte/macrophage colony-stimulating factor (GM-CSF) is a key cytokine in myelopoiesis and aberrant expression is associated with chronic inflammatory disease and myeloid leukemias. This aberrant expression is often associated with constitutive nuclear factor (NF)-κB activation. To investigate the relationship between NF-κB and GM-CSF transcription in a chromatin context, we analyzed the chromatin structure of the GM-CSF gene in T cells and the role of NF-κB proteins in chromatin remodeling. We show here that chromatin remodeling occurs across a region of the GM-CSF gene between −174 and +24 upon T cell activation, suggesting that remodeling is limited to a single nucleosome encompassing the proximal promoter. Nuclear NF-κB levels appear to play a critical role in this process. In addition, using an immobilized template assay we found that the ATPase component of the SWI/SNF chromatin remodeling complex, brg1, is recruited to the GM-CSF proximal promoter in an NF-κB–dependent manner in vitro. These results suggest that chromatin remodeling across the GM-CSF promoter in T cells is a result of recruitment of SWI/SNF type remodeling complexes by NF-κB proteins binding to the CD28 response region of the promoter.


Blood ◽  
1998 ◽  
Vol 91 (7) ◽  
pp. 2459-2466 ◽  
Author(s):  
Anders Österborg ◽  
Qing Yi ◽  
Lotta Henriksson ◽  
Jan Fagerberg ◽  
Susanne Bergenbrant ◽  
...  

Idiotypic structures expressed on the myeloma Ig protein might be regarded as a tumor-specific antigen. Five patients with IgG myeloma were immunized with the purified serum M-component by repeated intradermal injections together with soluble granulocyte-macrophage colony-stimulating factor (GM-CSF). All patients developed an idiotype (Id)-specific T-cell immunity, defined as blood T cells predominantly secreting interferon-γ (IFN-γ) and interleukin-2 (IL-2) (type I cells). Id-specific DNA synthesis was induced in one patient. Delayed-type hypersensitivity against the Id was not evoked. The specific IFN-γ/IL-2 T-cell response was inhibited (46% to 100%) by a major histocompatibility complex (MHC) class I monoclonal antibody (MoAb) in all five patients. A 5% to 37% inhibition by an MHC class II MoAb was seen in four patients. CD4+ as well as CD8+ T cells enriched by magnetic microbeads contained Id-specific cells. The T cells recognized peptides corresponding to the complementarity-determining regions 1, 2, and 3 of the heavy chain of the Id. There was a transient rise of B cells producing IgM anti-idiotypic antibodies in all patients. The results indicate that immunization of myeloma patients using the autologous M-component and soluble GM-CSF may evoke an Id-specific predominantly MHC class I–restricted type I T-cell response.


2007 ◽  
Vol 25 (18_suppl) ◽  
pp. 3001-3001 ◽  
Author(s):  
L. Fong ◽  
B. Kavanagh ◽  
Y. Hou ◽  
S. O’Brien ◽  
J. Valiente ◽  
...  

3001 Background: CTLA-4 is a costimulatory molecule expressed on activated T cells that delivers an inhibitory signal to these T cells. CTLA4 blockade with antibody treatment has been shown to augment T cell responses and anti-tumor immunity in animal models. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a bone marrow growth factor for antigen presenting cells, which has also been shown to enhance anti-tumor immune responses. Methods: A phase I trial in patients with metastatic, hormone refractory prostate cancer (HRPC) was undertaken to combine these immunotherapies. Sequential cohorts of 3–6 patients were treated with escalating doses (0.5, 1.5 or 3 mg/kg) of ipilimumab, a fully human anti-CTLA-4 antibody, given IV on day 1 of each 28-day cycle × 4 cycles. Patients also received GM-CSF 250 mg/m2/d SC on days 1–14 of the 28-day cycles. Patients were monitored for toxicity as well as for T cell activation. PSA and radiographic tests were performed at baseline and through therapy to evaluate for clinical response. Results: 24 patients have been treated. Of 6 patients treated on the highest dose level (3 mg/kg ×4), 3 (50%) had confirmed PSA declines of >50%, and one of these patients had a partial response in hepatic metastases. Immune-related adverse events associated with ipilimumab treatment consisted of a grade 3 rash in 1 patient at 1.5 mg/kg, a grade 3 rash and panhypopituitarism in 1 patient at 3.0 mg/kg, and a grade 3 colitis in one patient at 3.0 mg/kg. All events were successfully managed. A dose-response relationship was seen between ipilimumab dose and effector T cell activation. Expansion of circulating CD4+ FoxP3+ regulatory T cells was also seen with treatment. Conclusions: CTLA-4 blockade combined with GM-CSF treatment induces clinical responses in HRPC. Treatment induces both the expansion of activated effector and regulatory T cells in vivo in cancer patients. Finally, CD4 and CD8 T cell activation, adverse events, and clinical responses appear to be dose-dependant. Supported by NIH SPORE P50 CA89520. No significant financial relationships to disclose.


Sign in / Sign up

Export Citation Format

Share Document