scholarly journals A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with distinct repression domains.

1996 ◽  
Vol 16 (10) ◽  
pp. 5458-5465 ◽  
Author(s):  
I Zamir ◽  
H P Harding ◽  
G B Atkins ◽  
A Hörlein ◽  
C K Glass ◽  
...  

Ligand-independent transcriptional repression is an important function of nuclear hormone receptors. An interaction screen with the repression domain of the orphan receptor RevErb identified N-CoR, the corepressor for thyroid hormone receptor (TR) and retinoic acid receptor (RAR). N-CoR is likely to be a bona fide transcriptional corepressor for RevErb because (i) RevErb interacts with endogenous N-CoR, (ii) ectopic N-CoR potentiates RevErb-mediated repression, and (iii) transcriptional repression by RevErb correlates with its ability to bind N-CoR. Remarkably, a region homologous to the CoR box which is necessary for TR and RAR to interact with N-CoR is not required for RevErb. Rather, two short regions of RevErb separated by approximately 200 amino acids are required for interaction with N-CoR. The primary amino acid sequence of the N-terminal region of RevErb essential for N-CoR interaction is not homologous to that of TR or RAR, whereas similarities exist among the C-terminal domains of the receptors. N-CoR contains two adjacent but distinct interaction domains, one of which binds tightly to both RevErb and TR whereas the other binds more weakly and differentially interacts with the nuclear receptors. These results indicate that multiple nuclear receptors, utilizing different primary amino acid sequences, repress transcription by interacting with N-CoR.

1994 ◽  
Vol 14 (10) ◽  
pp. 7025-7035 ◽  
Author(s):  
R Apfel ◽  
D Benbrook ◽  
E Lernhardt ◽  
M A Ortiz ◽  
G Salbert ◽  
...  

The steroid/hormone nuclear receptor superfamily comprises several subfamilies of receptors that interact with overlapping DNA sequences and/or related ligands. The thyroid/retinoid hormone receptor subfamily has recently attracted much interest because of the complex network of its receptor interactions. The retinoid X receptors (RXRs), for instance, play a very central role in this subfamily, forming heterodimers with several receptors. Here we describe a novel member of this subfamily that interacts with RXR. Using a v-erbA probe, we obtained a cDNA which encodes a novel 445-amino-acid protein, RLD-1, that contains the characteristic domains of nuclear receptors. Northern (RNA) blot analysis showed that in mature rats, the receptor is highly expressed in spleen, pituitary, lung, liver, and fat. In addition, weaker expression is observed in several other tissues. Amino acid sequence alignment and DNA-binding data revealed that the DNA-binding domain of the new receptor is related to that of the thyroid/retinoid subgroup of nuclear receptors. RLD-1 preferentially binds as a heterodimer with RXR to a direct repeat of the half-site sequence 5'-G/AGGTCA-3', separated by four nucleotides (DR-4). Surprisingly, this binding is dependent to a high degree on the nature of the spacing nucleotides. None of the known nuclear receptor ligands activated RLD-1. In contrast, a DR-4-dependent constitutive transcriptional activation of a chloramphenicol acetyltransferase reporter gene by the RLD-1/RXR alpha heterodimer was observed. Our data suggest a highly specific role for this novel receptor within the network of gene regulation by the thyroid/retinoid receptor subfamily.


1994 ◽  
Vol 14 (10) ◽  
pp. 7025-7035
Author(s):  
R Apfel ◽  
D Benbrook ◽  
E Lernhardt ◽  
M A Ortiz ◽  
G Salbert ◽  
...  

The steroid/hormone nuclear receptor superfamily comprises several subfamilies of receptors that interact with overlapping DNA sequences and/or related ligands. The thyroid/retinoid hormone receptor subfamily has recently attracted much interest because of the complex network of its receptor interactions. The retinoid X receptors (RXRs), for instance, play a very central role in this subfamily, forming heterodimers with several receptors. Here we describe a novel member of this subfamily that interacts with RXR. Using a v-erbA probe, we obtained a cDNA which encodes a novel 445-amino-acid protein, RLD-1, that contains the characteristic domains of nuclear receptors. Northern (RNA) blot analysis showed that in mature rats, the receptor is highly expressed in spleen, pituitary, lung, liver, and fat. In addition, weaker expression is observed in several other tissues. Amino acid sequence alignment and DNA-binding data revealed that the DNA-binding domain of the new receptor is related to that of the thyroid/retinoid subgroup of nuclear receptors. RLD-1 preferentially binds as a heterodimer with RXR to a direct repeat of the half-site sequence 5'-G/AGGTCA-3', separated by four nucleotides (DR-4). Surprisingly, this binding is dependent to a high degree on the nature of the spacing nucleotides. None of the known nuclear receptor ligands activated RLD-1. In contrast, a DR-4-dependent constitutive transcriptional activation of a chloramphenicol acetyltransferase reporter gene by the RLD-1/RXR alpha heterodimer was observed. Our data suggest a highly specific role for this novel receptor within the network of gene regulation by the thyroid/retinoid receptor subfamily.


2008 ◽  
Vol 411 (1) ◽  
pp. 19-26 ◽  
Author(s):  
Kyung-Chul Choi ◽  
So-Young Oh ◽  
Hee-Bum Kang ◽  
Yoo-Hyun Lee ◽  
Seungjoo Haam ◽  
...  

A central issue in mediating repression by nuclear hormone receptors is the distinct or redundant function between co-repressors N-CoR (nuclear receptor co-repressor) and SMRT (silencing mediator of retinoid and thyroid hormone receptor). To address the functional relationship between SMRT and N-CoR in TR (thyroid hormone receptor)-mediated repression, we have identified multiple TR target genes, including BCL3 (B-cell lymphoma 3-encoded protein), Spot14 (thyroid hormone-inducible hepatic protein), FAS (fatty acid synthase), and ADRB2 (β-adrenergic receptor 2). We demonstrated that siRNA (small interfering RNA) treatment against either N-CoR or SMRT is sufficient for the de-repression of multiple TR target genes. By the combination of sequence mining and physical association as determined by ChIP (chromatin immunoprecipitation) assays, we mapped the putative TREs (thyroid hormone response elements) in BCL3, Spot14, FAS and ADRB2 genes. Our data clearly show that SMRT and N-CoR are independently recruited to various TR target genes. We also present evidence that overexpression of N-CoR can restore repression of endogenous genes after knocking down SMRT. Finally, unliganded, co-repressor-free TR is defective in repression and interacts with a co-activator, p300. Collectively, these results suggest that both SMRT and N-CoR are limited in cells and that knocking down either of them results in co-repressor-free TR and consequently de-repression of TR target genes.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Chad E Grueter ◽  
Brett A Johnson ◽  
Xiaoxia Qi ◽  
John McAnally ◽  
Rhonda Bassel-Duby ◽  
...  

Aberrant cardiac metabolism is associated with obesity, type 2 diabetes and heart failure. The heart requires highly efficient metabolism to maintain the levels of ATP needed for contractility and pump function, however little is known about the role of the heart as a metabolic organ. Nuclear hormone receptors, such as thyroid hormone receptor play an important role in cardiovascular disease by significantly altering expression of genes involved in maintaining metabolic activity. The Mediator, a large multiprotein complex functions as a hub to control gene expression through association with transcriptional activators and repressors. We tested the hypothesis that Med13, a component of the Mediator complex, regulates cardiac function in a gain-of-function mouse model. Trangsenic mice overexpressing Med13 in the heart are lean, have increased energy expenditure, are resistant to high fat diet-induced obesity and have enhanced cardiac contractility. Microarray analysis and biochemical assays show that in vivo and in vitro Med13 selectively inhibits nuclear hormone receptor target genes of energy metabolism. These results implicate the Mediator complex regulates energy balance and cardiac contractility and suggests that the heart may function as a key component of mammalian energy homeostasis.


2006 ◽  
Vol 398 (3) ◽  
pp. 461-467 ◽  
Author(s):  
Sandrine Jayne ◽  
Carin G. M. Zwartjes ◽  
Frederik M. A. Van Schaik ◽  
H. Th. Marc Timmers

In eukaryotic cells, the Ccr4–Not complex can regulate mRNA metabolism at various levels. Previously, we showed that promoter targeting of the CNOT2 subunit resulted in strong repression of RNA polymerase II transcription, which was sensitive to the HDAC (histone deacetylase) inhibitor, trichostatin A [Zwartjes, Jayne, van den Berg and Timmers (2004) J. Biol. Chem. 279, 10848–10854]. In the present study, the cofactor requirement for CNOT2-mediated repression was investigated. We found that coexpression of SMRT (silencing mediator for retinoic acid receptor and thyroid-hormone receptor) or NCoR (nuclear hormone receptor co-repressor) in combination with HDAC3 (or HDAC5 and HDAC6) augmented the repression by CNOT2. This repressive effect is mediated by the conserved Not-Box, which resides at the C-terminus of CNOT2 proteins. We observed physical interactions of CNOT2 with several subunits of the SMRT/NCoR–HDAC3 complex. Our results show that the SMRT/NCoR–HDAC3 complex is a cofactor of CNOT2-mediated repression and suggest that transcriptional regulation by the Ccr4–Not complex involves regulation of chromatin modification.


2001 ◽  
Vol 26 (1) ◽  
pp. 51-65 ◽  
Author(s):  
O Marchand ◽  
R Safi ◽  
H Escriva ◽  
E Van Rompaey ◽  
P Prunet ◽  
...  

Thyroid hormones are pleiotropic factors important for many developmental and physiological functions in vertebrates. Their effects are mediated by two specific receptors (TRalpha and TRbeta) which are members of the nuclear hormone receptor superfamily. To clarify the function of these receptors, our laboratory has started a comparative study of their role in teleost fish. This type of approach has been hampered by the isolation of specific clones for each fish species studied. In this report, we describe an efficient reverse transcription/PCR procedure that allows the isolation of large fragments corresponding to TRalpha and TRbeta of a wide range of teleost fish. Phylogenetic analysis of these receptors revealed a placement consistent with their origin, sequences from teleost fish being clearly monophyletic for both TRalpha and TRbeta. Interestingly, this approach allowed us to isolate (from tilapia and salmon) several new TRalpha or TRbeta isoforms resulting from alternative splicing. These isoforms correspond to expressed transcripts and thus may have an important physiological function. In addition, we isolated a cDNA encoding TRbeta in the Atlantic salmon (Salmo salar) encoding a functional thyroid hormone receptor which binds specific thyroid hormone response elements and regulates transcription in response to thyroid hormones.


1999 ◽  
Vol 19 (5) ◽  
pp. 3383-3394 ◽  
Author(s):  
Uwe Dressel ◽  
Dorit Thormeyer ◽  
Boran Altincicek ◽  
Achim Paululat ◽  
Martin Eggert ◽  
...  

ABSTRACT Some members of nuclear hormone receptors, such as the thyroid hormone receptor (TR), silence gene expression in the absence of the hormone. Corepressors, which bind to the receptor’s silencing domain, are involved in this repression. Hormone binding leads to dissociation of corepressors and binding of coactivators, which in turn mediate gene activation. Here, we describe the characteristics of Alien, a novel corepressor. Alien interacts with TR only in the absence of hormone. Addition of thyroid hormone leads to dissociation of Alien from the receptor, as shown by the yeast two-hybrid system, glutathioneS-transferase pull-down, and coimmunoprecipitation experiments. Reporter assays indicate that Alien increases receptor-mediated silencing and that it harbors an autonomous silencing function. Immune staining shows that Alien is localized in the cell nucleus. Alien is a highly conserved protein showing 90% identity between human and Drosophila. Drosophila Alien shows similar activities in that it interacts in a hormone-sensitive manner with TR and harbors an autonomous silencing function. Specific interaction of Alien is seen with Drosophila nuclear hormone receptors, such as the ecdysone receptor and Seven-up, the Drosophila homologue of COUP-TF1, but not with retinoic acid receptor, RXR/USP, DHR 3, DHR 38, DHR 78, or DHR 96. These properties, taken together, show that Alien has the characteristics of a corepressor. Thus, Alien represents a member of a novel class of corepressors specific for selected members of the nuclear hormone receptor superfamily.


2003 ◽  
Vol 23 (15) ◽  
pp. 5122-5131 ◽  
Author(s):  
Takahiro Ishizuka ◽  
Mitchell A. Lazar

ABSTRACT Nuclear receptor corepressors (N-CoR) and silencing mediator for retinoid and thyroid receptors (SMRT) have both been implicated in thyroid hormone receptor (TR)-mediated repression. Here we show that endogenous N-CoR, TBL1, and histone deacetylase 3 (HDAC3), but not HDAC1, -2, or -4, are recruited to a stably integrated reporter gene repressed by unliganded TR as well as the orphan receptor RevErb. Unliganded TR also recruits this complex to a transiently transfected reporter, and transcriptional repression is associated with local histone deacetylation that is reversed by the presence of thyroid hormone. Knockdown of N-CoR using small interfering RNAs markedly reduces repression by the TR ligand binding domain in human 293T cells, whereas knockdown of SMRT has little effect. RevErb repression appears to involve both corepressors in this system. Knockdown of HDAC3 markedly reduces repression by both TR and RevErb, while knockdown of HDAC1 or 2 has more modest, partly nonspecific effects. Thus, HDAC3 is critical for repression by multiple nuclear receptors and the N-CoR HDAC3 complex plays a unique and necessary role in TR-mediated gene repression in human 293T cells.


Endocrinology ◽  
1999 ◽  
Vol 140 (3) ◽  
pp. 1356-1364 ◽  
Author(s):  
Noriyuki Koibuchi ◽  
Ying Liu ◽  
Harumi Fukuda ◽  
Akira Takeshita ◽  
Paul M. Yen ◽  
...  

Abstract This study is designed to clarify the role of an orphan nuclear hormone receptor, RORα, on thyroid hormone (TH) receptor (TR)-mediated transcription on a TH-response element (TRE). A transient transfection study using various TREs [i.e., F2 (chick lysozyme TRE), DR4 (direct repeat), and palindrome TRE] and TR and RORα1 was performed. When RORα1 and TR were cotransfected into CV1 cells, RORα1 enhanced the transactivation by liganded-TR on all TREs tested without an effect on basal repression by unliganded TR. By electrophoretic mobility shift assay, on the other hand, although RORα bound to all TREs tested as a monomer, no (or weak) TR and RORα1 heterodimer formation was observed on various TREs except when a putative ROR-response element was present. The transactivation by RORα1 on a ROR-response element, which does not contain a TRE, was not enhanced by TR. The effect of RORα1 on the TREs is unique, because, whereas other nuclear hormone receptors (such as vitamin D receptor) may competitively bind to TRE to exert dominant negative function, RORα1 augmented TR action. These results indicate that RORα1 may modify the effect of liganded TR on TH-responsive genes. Because TR and RORα are coexpressed in cerebellar Purkinje cells, and perinatal hypothyroid animals and RORα-disrupted animals show similar abnormalities of this cell type, cross-talk between these two receptors may play a critical role in Purkinje cell differentiation.


2001 ◽  
Vol 81 (3) ◽  
pp. 1269-1304 ◽  
Author(s):  
Ana Aranda ◽  
Angel Pascual

The nuclear hormone receptor superfamily includes receptors for thyroid and steroid hormones, retinoids and vitamin D, as well as different “orphan” receptors of unknown ligand. Ligands for some of these receptors have been recently identified, showing that products of lipid metabolism such as fatty acids, prostaglandins, or cholesterol derivatives can regulate gene expression by binding to nuclear receptors. Nuclear receptors act as ligand-inducible transcription factors by directly interacting as monomers, homodimers, or heterodimers with the retinoid X receptor with DNA response elements of target genes, as well as by “cross-talking” to other signaling pathways. The effects of nuclear receptors on transcription are mediated through recruitment of coregulators. A subset of receptors binds corepressor factors and actively represses target gene expression in the absence of ligand. Corepressors are found within multicomponent complexes that contain histone deacetylase activity. Deacetylation leads to chromatin compactation and transcriptional repression. Upon ligand binding, the receptors undergo a conformational change that allows the recruitment of multiple coactivator complexes. Some of these proteins are chromatin remodeling factors or possess histone acetylase activity, whereas others may interact directly with the basic transcriptional machinery. Recruitment of coactivator complexes to the target promoter causes chromatin decompactation and transcriptional activation. The characterization of corepressor and coactivator complexes, in concert with the identification of the specific interaction motifs in the receptors, has demonstrated the existence of a general molecular mechanism by which different receptors elicit their transcriptional responses in target genes.


Sign in / Sign up

Export Citation Format

Share Document