scholarly journals Unimpaired macrophage differentiation and activation in mice lacking the zinc finger transplantation factor NGFI-A (EGR1).

1996 ◽  
Vol 16 (8) ◽  
pp. 4566-4572 ◽  
Author(s):  
S L Lee ◽  
Y Wang ◽  
J Milbrandt

The zinc finger protein NGFI-A (also called EGR1, Krox24, or zif268) is a candidate regulator of myeloid cell differentiation. Evidence supporting this hypothesis is twofold. First, NGFI-A antisense oligonucleotides prevent macrophage differentiation in HL-60 and U937 myeloid leukemia cell lines and in normal bone marrow cells. Second, enforced expression of NGFI-A blocks granulocytic differentiation and promotes macrophage differentiation in HL-60 cells and in the hematopoietic progenitor cell line 32D. We sought to determine the effect of NGFI-A deficiency on macrophage differentiation and function in vivo by examining native bone marrow cells from mice homozygous for a disrupted allele of NGFI-A derived from gene-targeted ES cells. Macrophages were observed in peripheral blood and several tissues, indicating that NGFI-A was not required for the formation of a variety of macrophage compartments. No differences in myeloid cell differentiation were observed between wild-type and NGFI-A-/- bone marrow cells cultured in the presence of macrophage, granulocyte-macrophage, or granulocyte colony-stimulating factor (M-CSF, GM-CSF, or G-CSF). Activation of NGFI-A-/- macrophages was comparable to that of wild-type macrophages as determined by nitric oxide production and increased cell surface expression of class II major histocompatibility complex molecules. Moreover, NGFI-A-/- mice showed no increased mortality or bacteria] burden when challenged with Listeria monocytogenes. Together, these results indicate that NGFI-A is not required for macrophage differentiation or activation.

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 64-64 ◽  
Author(s):  
Bert A. Van der Reijden ◽  
Jurgen A.F. Marteijn ◽  
Liesbeth Van Emst ◽  
Theo De Witte ◽  
Joop H. Jansen

Abstract We identified Triad1 as a gene that is upregulated by retinoic acid during the granulocytic differentiation of acute promyelocytic leukemia cells. In normal hematopoiesis, we show that Triad1 is weakly expressed in immature CD34+ bone marrow cells, and highly expressed in mature monocytes and granulocytes. Together, this suggests that Triad1 plays a role in the differentiation of hematopoietic cells. Triad1 contains a tripartite domain including two RING fingers, indicating that this protein might function as a ubiquitin E3 ligase, catalyzing the the conjugation of ubiquitin to substrate proteins thereby marking them for targeted degradation by the 26S proteasome. Using GST pull down experiments, we show that Triad1 binds to the ubiquitin conjugating (E2) enzymes UbcH6 and 7. In addition, immunoprecipitation of Triad1 in cells that were transfected with FLAG-tagged ubiquitin shows that Triad1 binds to ubiquitinated proteins, and that Triad1 is capable of self-ubiquitination, further corroborating the assumption that Triad1 acts as a E3 ubiquitin ligating enzyme. To study the role of Triad1 in hematopoiesis we overexpressed the gene in primary murine bone marrow cells using a retroviral vector that contains Triad1 in front of an IRES-GFP cassette. GFP positive cells were FACS sorted and used in colony assays (CFU-GM). Compared to empty vector controls (GFP alone), Triad1 expression resulted in more than 80% inhibition of clonogenic growth. Importantly, addition of the proteasome inhibitor MG132 (10E-8 M) reversed the Triad1-induced suppression of colony formation. Furthermore, three Triad1 expression constructs in which one of the conserved cys/his residues of the TRIAD domain (essential for function) were mutated did not show the suppressive effect on colony formation. Together, these data show that Triad1 is involved in myelopoiesis and acts through the ubiquitination of specific substrate proteins. To identify these substrates, a yeast-two-hybrid screen of a human bone marrow cDNA library was performed using the Triad1 protein as a bait. Interestingly, the transcriptional repressor Gfi1b was found to bind to Triad1. The interaction was confirmed by immunoprecipitation using GFP-Triad1 and FLAG-tagged Gfi1b transfections in mammalian cells. We show that Triad1 binds to the zinc finger region of Gfi1b. This region is very (>98%) homologous to the paralogue Gfi1. Further immunoprecipitation analyses showed that Triad1 also binds to the zinc finger region of Gfi1. Gfi1 plays an essential role in neutrophil development and Gfi1 pointmutations result in neutropenia in man. Currently, we are studying the direct ubiquitination of Gfi and Gfi1b by Triad1 in in vitro ubiquitination assays. In addition, we are studying the effect of Triad1 on the transcriptional repression of the ELA2 and other promoters by Gfi1.


Blood ◽  
1998 ◽  
Vol 92 (2) ◽  
pp. 607-615 ◽  
Author(s):  
Jean Labrecque ◽  
Deborah Allan ◽  
Pierre Chambon ◽  
Norman N. Iscove ◽  
David Lohnes ◽  
...  

Transcripts for the retinoic acid receptors (RARs) α1, α2, γ1, and γ2 were found in the granulocytic lineage (Gr-1+cells) through semiquantitative polymerase chain reaction (PCR) analysis. The screening of single cell cDNA libraries derived from hematopoietic progenitors also showed the presence of RARα and, to a lesser extent, RARγ transcripts in committed granulocyte (colony-forming unit-granulocyte [CFU-G]) or granulocyte-macrophage (CFU-GM) colony-forming cells. The contribution of RARα1 and γ to hematopoietic cell differentiation was therefore investigated in mice bearing targeted disruption of either one or both of these loci. Because RARγ and RARα1γ compound null mutants die shortly after birth, bone marrow cells were collected from fetuses at 18.5 days postcoitum (dpc) and evaluated for growth and differentiation in culture in the presence of Steel factor (SF), interleukin-3 (IL-3), and erythropoietin (Epo). The frequency of colony-forming cells from bone marrow populations derived from RARα1/γ double null mice was not significantly different from that of RARγ or RARα1 single nulls or from wild-type controls. In addition, the distribution of erythroid, granulocyte, and macrophage colonies was comparable between hematopoietic cells from all groups, suggesting that lineage commitment was not affected by the lack of RARα1 and/or RARγ. Colony cells were then harvested individually and evaluated by morphologic criteria. While terminal granulocyte differentiation was evident in wild-type cells and colonies from either single null mutant, colonies derived from RARα1−/−γ−/− bone marrow populations were blocked at the myelocyte and, to a lesser extent, at the metamyelocyte stages, whereas erythroid and macrophage differentiation was not affected. Together, these results indicate that both RARα1 and γ are required for terminal maturation in the granulocytic lineage in vitro, but appear to be dispensable for the early stages of hematopoietic cell development. Our results raise the possibility that in acute promyelocytic leukemia (APL), the different RARα fusion proteins cause differentiation arrest at a stage when further maturation requires not only RARα, but also RARγ. Finally, bone marrow cells appear to differentiate normally in vivo, suggesting an effective compensation mechanism in the RARα1/γ double null mice.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1697-1697
Author(s):  
Shiv K. Gupta ◽  
Mamta Gupta ◽  
Barbara Hoffman ◽  
Dan A. Liebermann

Abstract Growth arrest and DNA damage, Gadd45 gene family members are rapidly induced by genotoxic agents as well as by apoptosis and differentiation inducing cytokines. Their role in hemetopoiesis, wherein proliferation, differentiation and apoptosis integrate to maintain cellular homeostasis, is not clear. Using bone marrow cells from gadd45a or gadd45b deficient and wild type littermate mice we have investigated the role of Gadd45 proteins in cytokine induced myeloid cell differentiation in vitro. Bone marrow cells obtained from either gadd45a or gadd45b deficient mice displayed compromised cytokines (IL3, GM-CSF, M-CSF or G-CSF) induced myelopoiesis, resulting in a quantitatively decreased population of mature myeloid cells. Immuno-phenotyping with antibodies to cell surface molecules associated with myeloid cell maturation confirmed impaired myeloid cell maturation in Gadd45a or b deficient bone marrow cells treated with the above cytokines. Analysis of apoptosis by annexin-V and PI staining followed by FACS analysis showed a substantially higher apoptosis in Gadd45a−/− as well as gadd45b−/− cells compared to wild type cells after treatment with M-CSF or G-CSF. Gadd45a−/− as well as gadd45b−/− bone marrow cells were found to be less clonogenic in methylcellulose medium. Morphologically compact and round colonies consisting of immature myeloid cells prevailed over dispersed- colonies consisting of mature myeloid cells in gadd45- deficient cells cultured in methyl cellulose containing IL-3. Furthermore, colony re-plating assay showed better self-renewal abilities in gadd45a−/− as well as gadd45b−/− progenitors, compared to wild type progenitor cells. Altered myelopoiesis in gadd45 a or b deficient mice was further confirmed in vivo by intra-peritoneal administration of sodium casienate - a known inducer of inflammatory response and myelopoiesis in mice bone marrow. Sodium casienate failed to enhance myelopoiesis in gadd45a or gadd45b deficient mice bone marrow, while wild type littermate mice showed a rapid induction of myelopoiesis. Simultaneously peritoneal exudates collected from gadd45 deficient mice consisted of 2–3 fold less myeloid cells compared to age matched wild type control mice after sodium casienate treatment. Gadd45a−/− or gadd45b−/− mice showed a slow recovery after myelo-suppressive effect of antimetabolite 5-Fluorouracil, which further confirmed that gadd45 deficiency leads to delayed myelopoiesis in mouse. Mechanistic aspects of Gadd45 deficiency, which results in impaired myelopoiesis are under investigation.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4100-4100
Author(s):  
Hyung Chan Suh ◽  
Tong Yin ◽  
Touati Benoukraf ◽  
Jonathan Said ◽  
Stephen Lee ◽  
...  

Abstract C/EBPepsilon (C/EBPε) knock-out (KO) mice have defects in granulocytic development and increased susceptibility to infection. We also observed a unique phenotype of C/EBPε KO mice showing prolonged lower grade, mild skin problems such as hair loss that progressed to severe wound problems; abdominal wall perforation to the peritoneum as well as mandibular skin perforation to the oral cavity, without significant clinical symptoms. The observation suggests inappropriate response to inflammation by loss of C/EBPε. To understand the functional defects of these granulocytes, we performed a systematic approach with ChIP-seq and microarray of bone marrow cells from C/EBPε KO mice. Duplicate ChIP-seq libraries were prepared from bone marrow cells of wild type and C/EBPε KO mice using two different C/EBPε specific antibodies. Analysis of pooled data identified 14,253 C/EBPε binding sites, and 12,865 of these binding sites overlapped with the two antibodies. Sixteen percent of C/EBPε binding sites were in the promoter regions within 1 kb of the transcriptional start sites. Direct canonical C/EBPε target genes were defined by 1.5 log2 fold or greater increase in expression in the Gr-1+/Mac-1+ cells of wild type bone marrow cells compared to those of the KO mice. 2,224 genes met this criteria including previously identified target genes, such as ltf, camp, ngp, of which 988 genes were bound by C/EBPε. C/EBPε bound to the promoter sites of 150 genes and the enhancer region of 838 genes. The other 1,236 up-regulated genes did not have binding of C/EBPε, suggesting their up-regulation was a secondary event during terminal granulocytic differentiation. Electromobility shift assay followed by antibody supershift confirmed that C/EBPε was able to bind to upstream regions of target genes such as lft, ngp, il-1b. Trem-1 is an amplifier of inflammatory response. Increased expression/activation of Trem-1 on neutrophil membranes takes part in cytokine production, phagocytosis, apoptosis, oxidative burst by cooperating with TLR4 in response to environmental conditions. Soluble TREM1 levels increase even in neutopenic patients, suggesting it is associated with emergent granulopoiesis in response to infection or inflammation. The expression of Trem-1 is regulated by NF-kB and PU.1. Trem-1 KO mice have reduced inflammation without defects in clearance of pathogens in mice. Considering previous reports demonstrating TLR4 increases transcription of C/EBP and potentiates transcriptional activity of C/EBP via NF-kB, regulatory loops between TLR4/NF-kB/C/EBP/Trem-1 may exist and regulate inflammatory response. ChIP-seq illustrated a C/EBPε binding site located 92 bp upstream from transcription start site of Trem-1 (GTTGTGAAAC). Microarray comparison of Trem-1 expression in Gr-1+/Mac-1+ bone marrow cells showed 5.3 log2 fold decreased gene expression in C/EBPε KO versus wild type mice. To confirm microarray data, quantitative PCR were performed with sorted Gr-1+ bone marrow cells from wild type and KO mice. The qPCR demonstrated that trem-1 expression of C/EBPε KO cells was 60% of wild type (p=0.001). A pGL3 basic luciferase vector with the first 291bp upstream of trem-1containing a putative C/EBPε binding site was cloned and co-transfected with 2 ug of C/EBPε expressing vector into 293T cells. The dual luciferase assay, normalized by renilla luciferase, showed 8 fold increase by C/EBPε (p<0.0001). In conclusion, we identified trem-1 as a downstream target of C/EBPε, which completes a positive regulatory loop of TLR4-NF-kB-C/EBPε-Trem1-TLR4 in response to inflammatory signal. Therefore, C/EBPε KO mice have an inappropriate inflammatory response by loss of the positive amplificatory loop, in addition to previously known defective clearance of pathogen by their inability to produce secondary granules. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2531-2531
Author(s):  
Kotaro Shide ◽  
Haruko K. Shimoda ◽  
Takashi Kumano ◽  
Kennosuke Karube ◽  
Takuro Kameda ◽  
...  

Abstract An acquired JAK2 V617F mutation has been detected in up to 90% of patients with polycythemia vera (PV) and in a sizeable proportion of patients with other myeloproliferative disorders such as essential thrombocythemia (ET) and idiopathic myelofibrosis (IMF). However, how a single mutation may be responsible for such different clinical phenotypes is unknown. Mice transplanted with bone marrow cells in which V617F JAK2 was retrovirally expressed developed PV-like features, but not ET or IMF. To address the contribution of this mutation to the pathogenesis of these three MPDs, we generated transgenic mice expressing V617F JAK2 driven by the murine H2Kb promoter. We established two lines. The expression of V617F JAK2 mRNA in bone marrow cells was 0.45 and 1.35 that of endogenous wild-type JAK2 in the two lines. One line showed leukocytosis after 4 months of age, with a predominance of granulocytes. Among 43 mice, examined after 3 months of age, 8 (19%) showed polycythemia and 14 (33%) showed thrombocythemia. Two polycythemia cases also showed thromobocytosis. The other line showed extreme leukocytosis and thromobocytosis at one month of age. The leukocytosis progressed as the animals aged, but the thrombocytosis tended to resolve at 8 months. They showed anemia that means Hb value from 9 to 10 g/dL at one month old. Myeloid cells and megakaryocytes were predominant in the bone marrow of these animals, and splenomegaly with myeloid cell and megakaryocyte invasion was observed. We conclude that in vivo expression of V617F JAK2 results in ET-like, IMF-like, and PV-like disease.


Blood ◽  
1998 ◽  
Vol 92 (2) ◽  
pp. 607-615 ◽  
Author(s):  
Jean Labrecque ◽  
Deborah Allan ◽  
Pierre Chambon ◽  
Norman N. Iscove ◽  
David Lohnes ◽  
...  

Abstract Transcripts for the retinoic acid receptors (RARs) α1, α2, γ1, and γ2 were found in the granulocytic lineage (Gr-1+cells) through semiquantitative polymerase chain reaction (PCR) analysis. The screening of single cell cDNA libraries derived from hematopoietic progenitors also showed the presence of RARα and, to a lesser extent, RARγ transcripts in committed granulocyte (colony-forming unit-granulocyte [CFU-G]) or granulocyte-macrophage (CFU-GM) colony-forming cells. The contribution of RARα1 and γ to hematopoietic cell differentiation was therefore investigated in mice bearing targeted disruption of either one or both of these loci. Because RARγ and RARα1γ compound null mutants die shortly after birth, bone marrow cells were collected from fetuses at 18.5 days postcoitum (dpc) and evaluated for growth and differentiation in culture in the presence of Steel factor (SF), interleukin-3 (IL-3), and erythropoietin (Epo). The frequency of colony-forming cells from bone marrow populations derived from RARα1/γ double null mice was not significantly different from that of RARγ or RARα1 single nulls or from wild-type controls. In addition, the distribution of erythroid, granulocyte, and macrophage colonies was comparable between hematopoietic cells from all groups, suggesting that lineage commitment was not affected by the lack of RARα1 and/or RARγ. Colony cells were then harvested individually and evaluated by morphologic criteria. While terminal granulocyte differentiation was evident in wild-type cells and colonies from either single null mutant, colonies derived from RARα1−/−γ−/− bone marrow populations were blocked at the myelocyte and, to a lesser extent, at the metamyelocyte stages, whereas erythroid and macrophage differentiation was not affected. Together, these results indicate that both RARα1 and γ are required for terminal maturation in the granulocytic lineage in vitro, but appear to be dispensable for the early stages of hematopoietic cell development. Our results raise the possibility that in acute promyelocytic leukemia (APL), the different RARα fusion proteins cause differentiation arrest at a stage when further maturation requires not only RARα, but also RARγ. Finally, bone marrow cells appear to differentiate normally in vivo, suggesting an effective compensation mechanism in the RARα1/γ double null mice.


1998 ◽  
Vol 331 (3) ◽  
pp. 733-742 ◽  
Author(s):  
Masafumi YOSHIMURA ◽  
Yoshito IHARA ◽  
Tetsuo NISHIURA ◽  
Yu OKAJIMA ◽  
Megumu OGAWA ◽  
...  

Several sugar structures have been reported to be necessary for haemopoiesis. We analysed the haematological phenotypes of transgenic mice expressing β-1,4 N-acetylglucosaminyltransferase III (GnT-III), which forms bisecting N-acetylglucosamine on asparagine-linked oligosaccharides. In the transgenic mice, the GnT-III activity was elevated in bone marrow, spleen and peripheral blood and in isolated mononuclear cells from these tissues, whereas no activity was found in these tissues of wild-type mice. Stromal cells after long-term cultures of transgenic-derived bone marrow and spleen cells also showed elevated GnT-III activity, compared with an undetectable activity in wild-type stromal cells. As judged by HPLC analysis, lectin blotting and lectin cytotoxicity assay, bisecting GlcNAc residues were increased on both blood cells and stromal cells from bone marrow and spleen in transgenic mice. The transgenic mice displayed spleen atrophy, hypocellular bone marrow and pancytopenia. Bone marrow cells and spleen cells from transgenic mice produced fewer haemopoietic colonies. After lethal irradiation followed by bone marrow transplantation, transgenic recipient mice showed pancytopenia compared with wild-type recipient mice. Bone marrow cells from transgenic donors gave haematological reconstitution at the same level as wild-type donor cells. In addition, non-adherent cell production was decreased in long-term bone marrow cell cultures of transgenic mice. Collectively these results indicate that the stroma-supported haemopoiesis is compromised in transgenic mice expressing GnT-III, providing the first demonstration that the N-glycans have some significant roles in stroma-dependent haemopoiesis.


Blood ◽  
1997 ◽  
Vol 90 (6) ◽  
pp. 2148-2159 ◽  
Author(s):  
Harshal H. Nandurkar ◽  
Lorraine Robb ◽  
David Tarlinton ◽  
Louise Barnett ◽  
Frank Köntgen ◽  
...  

Abstract Interleukin-11 (IL-11) is a pleiotropic growth factor with a prominent effect on megakaryopoiesis and thrombopoiesis. The receptor for IL-11 is a heterodimer of the signal transduction unit gp130 and a specific receptor component, the α-chain (IL-11Rα). Two genes potentially encode the IL-11Rα: the IL11Ra and IL11Ra2 genes. The IL11Ra gene is widely expressed in hematopoietic and other organs, whereas the IL11Ra2 gene is restricted to only some strains of mice and its expression is confined to testis, lymph node, and thymus. To investigate the essential actions mediated by the IL-11Rα, we have generated mice with a null mutation of IL11Ra (IL11Ra−/−) by gene targeting. Analysis of IL11Ra expression by Northern blot and reverse transcriptase-polymerase chain reaction, as well as the absence of response of IL11Ra−/− bone marrow cells to IL-11 in hematopoietic assays, further confirmed the null mutation. Compensatory expression of the IL11Ra2 in bone marrow cells was not detected. IL11Ra−/− mice were healthy with normal numbers of peripheral blood white blood cells, hematocrit, and platelets. Bone marrow and spleen contained normal numbers of cells of all hematopoietic lineages, including megakaryocytes. Clonal cultures did not identify any perturbation of granulocyte-macrophage (GM), erythroid, or megakaryocyte progenitors. The number of day-12 colony-forming unit-spleen progenitors were similar in wild-type and IL11Ra−/− mice. The kinetics of recovery of peripheral blood white blood cells, platelets, and bone marrow GM progenitors after treatment with 5-flurouracil were the same in IL11Ra−/− and wild-type mice. Acute hemolytic stress was induced by phenylhydrazine and resulted in a 50% decrease in hematocrit. The recovery of hematocrit was comparable in IL11Ra−/− and wild-type mice. These observations indicate that IL-11 receptor signalling is dispensable for adult hematopoiesis.


Blood ◽  
1988 ◽  
Vol 71 (6) ◽  
pp. 1633-1640
Author(s):  
LM Pelus ◽  
PS Gentile

Intravenous (IV) injection of 0.1 to 10 micrograms of authentic prostaglandin E2 (PGE2) in intact steady-state mice induces a population of bone marrow and spleen cells having the capacity to suppress CFU-GM proliferation when admixed with normal bone marrow cells. Equivalent suppression of CFU-GM committed to monocytic as well as granulocytic differentiation was observed using colony-stimulating factors (CSFs) differing in their lineage specificities and by direct morphological analysis of proliferating clones. Kinetic analysis indicates that suppressive bone marrow cells appear within 2 hours after PGE2 injection, are maximal at 6 hours, and are no longer observed by 24 hours postinjection. Positive and negative selection studies using monoclonal antibodies indicate that the PGE2-induced suppressor cells react positively with anti-GMA 1.2, MAC1, and F4/80 monoclonal antibodies, suggesting a myeloid/monocytic origin. As few as 1,000 positively selected bone marrow or spleen cells were able to inhibit maximally normal CFU-GM proliferation by 50,000 control bone marrow cells. Suppression of normal CFU-GM can be substituted for by 24- hour cell-free supernates from unseparated bone marrow cells or GMA 1.2 or F4/80 positively selected marrow or spleen cells from PGE2-treated but not control mice. These supernates also inhibited BFU-E proliferation. Injection of as few as 2 million bone marrow cells from PGE2-treated mice into steady-state mice or animals hematopoietically rebounding following a sublethal injection of cyclophosphamide significantly suppressed total CFU-GM proliferation in recipient mice within 6 hours. In summary, these studies describe the detection of a novel hematopoietic control network induced by PGE2 in intact mice.


Blood ◽  
1988 ◽  
Vol 71 (6) ◽  
pp. 1633-1640 ◽  
Author(s):  
LM Pelus ◽  
PS Gentile

Abstract Intravenous (IV) injection of 0.1 to 10 micrograms of authentic prostaglandin E2 (PGE2) in intact steady-state mice induces a population of bone marrow and spleen cells having the capacity to suppress CFU-GM proliferation when admixed with normal bone marrow cells. Equivalent suppression of CFU-GM committed to monocytic as well as granulocytic differentiation was observed using colony-stimulating factors (CSFs) differing in their lineage specificities and by direct morphological analysis of proliferating clones. Kinetic analysis indicates that suppressive bone marrow cells appear within 2 hours after PGE2 injection, are maximal at 6 hours, and are no longer observed by 24 hours postinjection. Positive and negative selection studies using monoclonal antibodies indicate that the PGE2-induced suppressor cells react positively with anti-GMA 1.2, MAC1, and F4/80 monoclonal antibodies, suggesting a myeloid/monocytic origin. As few as 1,000 positively selected bone marrow or spleen cells were able to inhibit maximally normal CFU-GM proliferation by 50,000 control bone marrow cells. Suppression of normal CFU-GM can be substituted for by 24- hour cell-free supernates from unseparated bone marrow cells or GMA 1.2 or F4/80 positively selected marrow or spleen cells from PGE2-treated but not control mice. These supernates also inhibited BFU-E proliferation. Injection of as few as 2 million bone marrow cells from PGE2-treated mice into steady-state mice or animals hematopoietically rebounding following a sublethal injection of cyclophosphamide significantly suppressed total CFU-GM proliferation in recipient mice within 6 hours. In summary, these studies describe the detection of a novel hematopoietic control network induced by PGE2 in intact mice.


Sign in / Sign up

Export Citation Format

Share Document