scholarly journals Coordination of the mating and cell integrity mitogen-activated protein kinase pathways in Saccharomyces cerevisiae.

1997 ◽  
Vol 17 (11) ◽  
pp. 6517-6525 ◽  
Author(s):  
B M Buehrer ◽  
B Errede

Mating pheromone stimulates a mitogen-activated protein (MAP) kinase activation pathway in Saccharomyces cerevisiae that induces cells to differentiate and form projections oriented toward the gradient of pheromone secreted by a mating partner. The polarized growth of mating projections involves new cell wall synthesis, a process that relies on activation of the cell integrity MAP kinase, Mpk1. In this report, we show that Mpk1 activation during pheromone induction requires the transcriptional output of the mating pathway and protein synthesis. Consequently, Mpk1 activation occurs subsequent to the activation of the mating pathway MAP kinase cascade. Additionally, Spa2 and Bni1, a formin family member, are two coil-coil-related proteins that are involved in the timing and other aspects of mating projection formation. Both proteins also affect the timing and extent of Mpk1 activation. This correlation suggests that projection formation comprises part of the pheromone-induced signal that coordinates Mpk1 activation with mating differentiation. Stimulation of Mpk1 activity occurs through the cell integrity phosphorylation cascade and depends on Pkc1 and the redundant MAP/Erk kinases (MEKs), Mkk1 and Mkk2. Surprisingly, Mpk1 activation by pheromone was only partially impaired in cells lacking the MEK kinase Bck1. This Bck1-independent mechanism reveals the existence of an alternative activator of Mkk1/Mkk2 in some strain backgrounds that at least functions under pheromone-induced conditions.

1999 ◽  
Vol 45 (1) ◽  
pp. 38-44 ◽  
Author(s):  
M Azuma ◽  
S Torii ◽  
J Kato ◽  
H Ooshima

To obtain information on cell wall synthesis and its relationship to morphology, we examined the induction of cell extensions of yeast upon the addition of isoamyl alcohol in osmotically fragile mutants that had mutations in genes related to the cell integrity pathway through activation of the mitogen-activated protein kinase cascade. We found that isoamyl alcohol induces cell extensions in pkc1 deletion mutants but not in mutants with mutations in genes positioned downstream or upstream of the PKC1 gene. These results suggest that Pkc1p functions not only in the integrity pathway but also in the induction. We characterized the elongated cells; many had two or more nuclei. We found no difference in cell surface structure between round and elongated cells from the results of chitin staining and cell wall extraction. Actin cytoskeleton was organized in elongated cells, as well as round cells. Cytochalasin D (0.08 mg/mL) inhibited the formation of actin cable but did not affect the induction of cell extensions.Key words: Saccharomyces cerevisiae, pkc1, isoamyl alcohol, cell extension.


2012 ◽  
Vol 23 (19) ◽  
pp. 3899-3910 ◽  
Author(s):  
Nan Hao ◽  
Necmettin Yildirim ◽  
Michal J. Nagiec ◽  
Stephen C. Parnell ◽  
Beverly Errede ◽  
...  

Different environmental stimuli often use the same set of signaling proteins to achieve very different physiological outcomes. The mating and invasive growth pathways in yeast each employ a mitogen-activated protein (MAP) kinase cascade that includes Ste20, Ste11, and Ste7. Whereas proper mating requires Ste7 activation of the MAP kinase Fus3, invasive growth requires activation of the alternate MAP kinase Kss1. To determine how MAP kinase specificity is achieved, we used a series of mathematical models to quantitatively characterize pheromone-stimulated kinase activation. In accordance with the computational analysis, MAP kinase feedback phosphorylation of Ste7 results in diminished activation of Kss1, but not Fus3. These findings reveal how feedback phosphorylation of a common pathway component can limit the activity of a competing MAP kinase through feedback phosphorylation of a common activator, and thereby promote signal fidelity.


Nutrients ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2440
Author(s):  
Lavinia Liliana Ruta ◽  
Ileana Cornelia Farcasanu

Caffeine–a methylxanthine analogue of the purine bases adenine and guanine–is by far the most consumed neuro-stimulant, being the active principle of widely consumed beverages such as coffee, tea, hot chocolate, and cola. While the best-known action of caffeine is to prevent sleepiness by blocking the adenosine receptors, caffeine exerts a pleiotropic effect on cells, which lead to the activation or inhibition of various cell integrity pathways. The aim of this review is to present the main studies set to investigate the effects of caffeine on cells using the model eukaryotic microorganism Saccharomyces cerevisiae, highlighting the caffeine synergy with external cell stressors, such as irradiation or exposure to various chemical hazards, including cigarette smoke or chemical carcinogens. The review also focuses on the importance of caffeine-related yeast phenotypes used to resolve molecular mechanisms involved in cell signaling through conserved pathways, such as target of rapamycin (TOR) signaling, Pkc1-Mpk1 mitogen activated protein kinase (MAPK) cascade, or Ras/cAMP protein kinase A (PKA) pathway.


2002 ◽  
Vol 22 (12) ◽  
pp. 4073-4085 ◽  
Author(s):  
Rachel J. Buchsbaum ◽  
Beth A. Connolly ◽  
Larry A. Feig

ABSTRACT Tiam1 and Ras-GRF1 are guanine nucleotide exchange factors (GEFs) that activate the Rac GTPase. The two GEFs have similar N-terminal regions containing pleckstrin homology domains followed by coiled-coils and additional sequences that function together to allow regulated GEF activity. Here we show that this N-terminal region of both proteins binds to the scaffold protein IB2/JIP2. IB2/JIP2 is a scaffold for the p38 mitogen-activated protein (MAP) kinase cascade because it binds to the Rac target MLK3, the MAP kinase kinase MKK3, and the p38 MAP kinase. Expression of IB2/JIP2 in cells potentiates the ability of Tiam1 or Ras-GRF1 to activate the p38 MAP kinase cascade but not the Jnk MAP kinase cascade. In addition, Tiam1 or Ras-GRF1 binding to IB2/JIP2 increases the association of the components of the p38 MAP kinase signaling cassette with IB2/JIP2 in cells and activates scaffold-associated p38. These findings imply that Tiam1 and Ras-GRF1 can contribute to Rac signaling specificity by their ability to form a complex with a scaffold that binds components of one of the many known Rac effector pathways.


2000 ◽  
Vol 13 (7) ◽  
pp. 781-786 ◽  
Author(s):  
David L. Andrews ◽  
John D. Egan ◽  
María E. Mayorga ◽  
Scott E. Gold

Ustilago maydis, the causal agent of corn smut disease, displays dimorphic growth in which it alternates between a budding haploid saprophyte and a filamentous dikaryotic pathogen. We are interested in identifying the genetic determinants of filamentous growth and pathogenicity in U. maydis. To do this we have taken a forward genetic approach. Earlier, we showed that haploid adenylate cyclase (uac1) mutants display a constitutively filamentous phenotype. Mutagenesis of a uac1 disruption strain allowed the isolation of a large number of budding suppressor mutants. These mutants are named ubc, for Ustilago bypass of cyclase, as they no longer require the production of cyclic AMP (cAMP) to grow in the budding morphology. Complementation of a subset of these suppressor mutants led to the identification of the ubc4 and ubc5 genes, which are required for filamentous growth and encode a MAP (mitogen-activated protein) kinase kinase kinase and a MAP kinase kinase, respectively. Evidence suggests that they are important in the pheromone response pathway and in pathogenicity. These results further support an important interplay of the cAMP and MAP kinase signal transduction pathways in the control of morphogenesis and pathogenicity in U. maydis.


2008 ◽  
Vol 7 (10) ◽  
pp. 1685-1698 ◽  
Author(s):  
Kimberly J. Gerik ◽  
Sujit R. Bhimireddy ◽  
Jan S. Ryerse ◽  
Charles A. Specht ◽  
Jennifer K. Lodge

ABSTRACT Cell wall integrity is crucial for fungal growth, survival, and pathogenesis. Responses to environmental stresses are mediated by the highly conserved Pkc1 protein and its downstream components. In this study, we demonstrate that both oxidative and nitrosative stresses activate the PKC1 cell integrity pathway in wild-type cells, as measured by phosphorylation of Mpk1, the terminal protein in the PKC1 phosphorylation cascade. Furthermore, deletion of PKC1 shows that this gene is essential for defense against both oxidative and nitrosative stresses; however, other genes involved directly in the PKC1 pathway are dispensable for protection against these stresses. This suggests that Pkc1 may have multiple and alternative functions other than activating the mitogen-activated protein kinase cascade from a “top-down” approach. Deletion of PKC1 also causes osmotic instability, temperature sensitivity, severe sensitivity to cell wall-inhibiting agents, and alterations in capsule and melanin. Furthermore, the vital cell wall components chitin and its deacetylated form chitosan appear to be mislocalized in a pkc1Δ strain, although this mutant contains wild-type levels of both of these polymers. These data indicate that loss of Pkc1 has pleiotropic effects because it is central to many functions either dependent on or independent of PKC1 pathway activation. Notably, this is the first time that Pkc1 has been implicated in protection against nitrosative stress in any organism.


2003 ◽  
Vol 71 (11) ◽  
pp. 6672-6675 ◽  
Author(s):  
Kazuto Matsunaga ◽  
Hiroyuki Yamaguchi ◽  
Thomas W. Klein ◽  
Herman Friedman ◽  
Yoshimasa Yamamoto

ABSTRACT A possible involvement of the mitogen-activated protein (MAP) kinase cascade in the inhibition of macrophage interleukin-12 (IL-12) production by Legionella pneumophila infection was examined. The results of MAP kinase inhibition by p42/44 and p38 MAP kinase inhibitors and of p42/44 MAP kinase activity assays indicate that L. pneumophila infection of macrophages causes a selective inhibition of lipopolysaccharide-induced IL-12 production by activating the p42/44 MAP kinase cascade. In addition, it was also revealed that the p38 MAP kinase may be important for the production of IL-12 but not for the inhibition caused by L. pneumophila infection.


2002 ◽  
Vol 22 (21) ◽  
pp. 7593-7602 ◽  
Author(s):  
Amy M. Delaney ◽  
John A. Printen ◽  
Huifen Chen ◽  
Eric B. Fauman ◽  
David T. Dudley

ABSTRACT Utilizing a genetic screen in the yeast Saccharomyces cerevisiae, we identified a novel autoactivation region in mammalian MEK1 that is involved in binding the specific MEK inhibitor, PD 184352. The genetic screen is possible due to the homology between components of the yeast pheromone response pathway and the eukaryotic Raf-MEK-ERK signaling cascade. Using the FUS1::HIS3 reporter as a functional readout for activation of a reconstituted Raf-MEK-ERK signaling cascade, randomly mutagenized MEK variants that were insensitive to PD 184352 were obtained. Seven single-base-change mutations were identified, five of which mapped to kinase subdomains III and IV of MEK. Of the seven variants, only one, a leucine-to-proline substitution at amino acid 115 (Leu115Pro), was completely insensitive to PD 184352 in vitro (50% inhibitory concentration >10 μM). However, all seven mutants displayed strikingly high basal activity compared to wild-type MEK. Overexpression of the MEK variants in HEK293T cells resulted in an increase in mitogen-activated protein (MAP) kinase phosphorylation, a finding consistent with the elevated basal activity of these constructs. Further, treatment with PD 184352 failed to inhibit Leu115Pro-stimulated MAP kinase activation in HEK293T cells, whereas all other variants had some reduction in phospho-MAP kinase levels. By using cyclic AMP-dependent protein kinase (1CDK) as a template, an MEK homology model was generated, with five of the seven identified residues clustered together, forming a potential hydrophobic binding pocket for PD 184352. Additionally, the model allowed identification of other potential residues that would interact with the inhibitor. Directed mutation of these residues supported this region's involvement with inhibitor binding.


2005 ◽  
Vol 388 (3) ◽  
pp. 843-849 ◽  
Author(s):  
Malkhey VERMA ◽  
Paike J. BHAT ◽  
K. V. VENKATESH

Glucose repression is a global transcriptional regulatory mechanism commonly observed in micro-organisms for the repression of enzymes that are not essential for glucose metabolism. In Saccharomyces cerevisiae, Mig1p, a homologue of Wilms' tumour protein, is a global repressor protein dedicated to glucose repression. Mig1p represses genes either by binding directly to the upstream repression sequence of structural genes or by indirectly repressing a transcriptional activator, such as Gal4p. In addition, some genes are repressed by both of the above mechanisms. This raises a fundamental question regarding the physiological relevance of the varied mechanisms of repression that exist involving Mig1p. We address this issue by comparing two well-known glucose-repression systems, that is, SUC2 and GAL gene expression systems, which encompass all the above three mechanisms. We demonstrate using steady-state analysis that these mechanisms lead to a hierarchical glucose repression profile of different family of genes. This switch over from one carbon source to another is well-calibrated as a function of glucose concentration through this hierarchical transcriptional response. The mechanisms prevailing in this repression system can achieve amplification and sensitivity, as observed in the well-characterized MAPK (mitogen-activated protein kinase) cascade system, albeit through a different structure. A critical feature of repression predicted by our steady-state model for the mutant strain of S. cerevisiae lacking Gal80p agrees well with the data reported here as well as that available in the literature.


Sign in / Sign up

Export Citation Format

Share Document