scholarly journals DNA binding by MADS-box transcription factors: a molecular mechanism for differential DNA bending.

1997 ◽  
Vol 17 (5) ◽  
pp. 2876-2887 ◽  
Author(s):  
A G West ◽  
P Shore ◽  
A D Sharrocks

The serum response factor (SRF) and myocyte enhancer factor 2A (MEF2A) represent two human members of the MADS-box transcription factor family. Each protein has a distinct biological function which is reflected by the distinct specificities of the proteins for coregulatory protein partners and DNA-binding sites. In this study, we have investigated the mechanism of DNA binding utilized by these two related transcription factors. Although SRF and MEF2A belong to the same family and contain related DNA-binding domains, their DNA-binding mechanisms differ in several key aspects. In contrast to the dramatic DNA bending induced by SRF, MEF2A induces minimal DNA distortion. A combination of loss- and gain-of-function mutagenesis identified a single amino acid residue located at the N terminus of the recognition helices as the critical mediator of this differential DNA bending. This residue is also involved in determining DNA-binding specificity, thus indicating a link between DNA bending and DNA-binding specificity determination. Furthermore, different basic residues within the putative recognition alpha-helices are critical for DNA binding, and the role of the C-terminal extensions to the MADS box in dimerization between SRF and MEF2A also differs. These important differences in the molecular interactions of SRF and MEF2A are likely to contribute to their differing roles in the regulation of specific gene transcription.

1993 ◽  
Vol 13 (7) ◽  
pp. 3999-4010 ◽  
Author(s):  
M Merika ◽  
S H Orkin

GATA-binding proteins constitute a family of transcription factors that recognize a target site conforming to the consensus WGATAR (W = A or T and R = A or G). Here we have used the method of polymerase chain reaction-mediated random site selection to assess in an unbiased manner the DNA-binding specificity of GATA proteins. Contrary to our expectations, we show that GATA proteins bind a variety of motifs that deviate from the previously assigned consensus. Many of the nonconsensus sequences bind protein with high affinity, equivalent to that of conventional GATA motifs. By using the selected sequences as probes in the electrophoretic mobility shift assay, we demonstrate overlapping, but distinct, sequence preferences for GATA family members, specified by their respective DNA-binding domains. Furthermore, we provide additional evidence for interaction of amino and carboxy fingers of GATA-1 in defining its binding site. By performing cotransfection experiments, we also show that transactivation parallels DNA binding. A chimeric protein containing the finger domain of areA and the activation domains of GATA-1 is capable of activating transcription in mammalian cells through GATA motifs. Our findings suggest a mechanism by which GATA proteins might selectively regulate gene expression in cells in which they are coexpressed.


1993 ◽  
Vol 13 (7) ◽  
pp. 3850-3859
Author(s):  
T A Coleman ◽  
C Kunsch ◽  
M Maher ◽  
S M Ruben ◽  
C A Rosen

The subunits of NF-kappa B, NFKB1 (formerly p50) and RelA (formerly p65), belong to a growing family of transcription factors that share extensive similarity to the c-rel proto-oncogene product. The homology extends over a highly conserved stretch of approximately 300 amino acids termed the Rel homology domain (RHD). This region has been shown to be involved in both multimerization (homo- and heterodimerization) and DNA binding. It is now generally accepted that homodimers of either subunit are capable of binding DNA that contains a kappa B site originally identified in the immunoglobulin enhancer. Recent studies have demonstrated that the individual subunits of the NF-kappa B transcription factor complex can be distinguished by their ability to bind distinct DNA sequence motifs. By using NFKB1 and RelA subunit fusion proteins, different regions within the RHD were found to confer DNA-binding and multimerization functions. A fusion protein that contains 34 N-terminal amino acids of NFKB1 and 264 amino acids of RelA displayed preferential binding to an NFKB1-selective DNA motif while dimerizing with the characteristics of RelA. Within the NFKB1 portion of this fusion protein, a single amino acid change of His to Arg altered the DNA-binding specificity to favor interaction with the RelA-selective DNA motif. Furthermore, substitution of four amino acids from NFKB1 into RelA was able to alter the DNA-binding specificity of the RelA protein to favor interaction with the NFKB1-selective site. Taken together, these findings demonstrate the presence of a distinct subdomain within the RHD involved in conferring the DNA-binding specificity of the Rel family of proteins.


Plant Science ◽  
2005 ◽  
Vol 169 (4) ◽  
pp. 785-797 ◽  
Author(s):  
Addie N. Olsen ◽  
Heidi A. Ernst ◽  
Leila Lo Leggio ◽  
Karen Skriver

2013 ◽  
Vol 42 (4) ◽  
pp. 2138-2146 ◽  
Author(s):  
Jose M. Muiño ◽  
Cezary Smaczniak ◽  
Gerco C. Angenent ◽  
Kerstin Kaufmann ◽  
Aalt D.J. van Dijk

Abstract Plant MADS-domain transcription factors act as key regulators of many developmental processes. Despite the wealth of information that exists about these factors, the mechanisms by which they recognize their cognate DNA-binding site, called CArG-box (consensus CCW6GG), and how different MADS-domain proteins achieve DNA-binding specificity, are still largely unknown. We used information from in vivo ChIP-seq experiments, in vitro DNA-binding data and evolutionary conservation to address these important questions. We found that structural characteristics of the DNA play an important role in the DNA binding of plant MADS-domain proteins. The central region of the CArG-box largely resembles a structural motif called ‘A-tract’, which is characterized by a narrow minor groove and may assist bending of the DNA by MADS-domain proteins. Periodically spaced A-tracts outside the CArG-box suggest additional roles for this structure in the process of DNA binding of these transcription factors. Structural characteristics of the CArG-box not only play an important role in DNA-binding site recognition of MADS-domain proteins, but also partly explain differences in DNA-binding specificity of different members of this transcription factor family and their heteromeric complexes.


1996 ◽  
Vol 16 (7) ◽  
pp. 3338-3349 ◽  
Author(s):  
P Shore ◽  
A J Whitmarsh ◽  
R Bhaskaran ◽  
R J Davis ◽  
J P Waltho ◽  
...  

Several mechanisms are employed by members of transcription factor families to achieve sequence-specific DNA recognition. In this study, we have investigated how members of the ETS-domain transcription factor family achieve such specificity. We have used the ternary complex factor (TCF) subfamily as an example. ERK2 mitogen-activated protein kinase stimulates serum response factor-dependent and autonomous DNA binding by the TCFs Elk-1 and SAP-la. Phosphorylated Elk-1 and SAP-la exhibit specificities of DNA binding similar to those of their isolated ETS domains. The ETS domains of Elk-1 and SAP-la and SAP-2 exhibit related but distinct DNA-binding specificities. A single residue, D-69 (Elk-1) or V-68 (SAP-1), has been identified as the critical determinant for the differential binding specificities of Elk-1 and SAP-1a, and an additional residue, D-38 (Elk-1) or Q-37 (SAP-1), further modulates their DNA binding. Creation of mutations D38Q and D69V is sufficient to confer SAP-la DNA-binding specificity upon Elk-1 and thereby allow it to bind to a greater spectrum of sites. Molecular modelling indicates that these two residues (D-38 and D-69) are located away from the DNA-binding interface of Elk-1. Our data suggest a mechanism in which these residues modulate DNA binding by influencing the interaction of other residues with DNA.


Sign in / Sign up

Export Citation Format

Share Document