scholarly journals A Novel Phosphorylation-Dependent RNase Activity of GAP-SH3 Binding Protein: a Potential Link between Signal Transduction and RNA Stability

1998 ◽  
Vol 18 (7) ◽  
pp. 3956-3965 ◽  
Author(s):  
Imed-eddine Gallouzi ◽  
Fabienne Parker ◽  
Karim Chebli ◽  
Florence Maurier ◽  
Emmanuel Labourier ◽  
...  

ABSTRACT A potential p120 GTPase-activating protein (RasGAP) effector, G3BP (RasGAP Src homology 3 [SH3] binding protein), was previously identified based on its ability to bind the SH3 domain of RasGAP. Here we show that G3BP colocalizes and physically interacts with RasGAP at the plasma membrane of serum-stimulated but not quiescent Chinese hamster lung fibroblasts. In quiescent cells, G3BP was hyperphosphorylated on serine residues, and this modification was essential for its activity. Indeed, G3BP harbors a phosphorylation-dependent RNase activity which specifically cleaves the 3′-untranslated region of human c-myc mRNA. The endoribonuclease activity of G3BP can initiate mRNA degradation and therefore represents a link between a RasGAP-mediated signaling pathway and RNA turnover.

2005 ◽  
Vol 388 (2) ◽  
pp. 631-638 ◽  
Author(s):  
Björn ROTTER ◽  
Odile BOURNIER ◽  
Gael NICOLAS ◽  
Didier DHERMY ◽  
Marie-Christine LECOMTE

The spectrin-based membrane skeleton, a multi-protein scaffold attached to diverse cellular membranes, is presumed to be involved in the stabilization of membranes, the establishment of membrane domains as well as in vesicle trafficking and nuclear functions. Spectrin tetramers made of α- and β-subunits are linked to actin microfilaments, forming a network that binds a multitude of proteins. The most prevalent α-spectrin subunit in non-erythroid cells, αII-spectrin, contains two particular spectrin repeats in its central region, α9 and α10, which host an Src homology 3 domain, a tissue-specific spliced sequence of 20 residues, a calmodulin-binding site and major cleavage sites for caspases and calpains. Using yeast two-hybrid screening of kidney libraries, we identified two partners of the α9-α10 repeats: the potential tumour suppressor Tes, an actin-binding protein mainly located at focal adhesions; and EVL (Ena/vasodilator-stimulated phosphoprotein-like protein), another actin-binding protein, equally recruited at focal adhesions. Interactions between spectrin and overexpressed Tes and EVL were confirmed by co-immunoprecipitation. In vitro studies showed that the interaction between Tes and spectrin is mediated by a LIM (Lin-11, Isl-1 and Mec3) domain of Tes and by the α10 repeat of αII-spectrin whereas EVL interacts with the Src homology 3 domain located within the α9 repeat. Moreover, we describe an in vitro interaction between Tes and EVL, and a co-localization of these two proteins at focal adhesions. These interactions between αII-spectrin, Tes and EVL indicate new functions for spectrin in actin dynamics and focal adhesions.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Matthias Siebert ◽  
Mathias A Böhme ◽  
Jan H Driller ◽  
Husam Babikir ◽  
Malou M Mampell ◽  
...  

Synaptic vesicles (SVs) fuse at active zones (AZs) covered by a protein scaffold, at Drosophila synapses comprised of ELKS family member Bruchpilot (BRP) and RIM-binding protein (RBP). We here demonstrate axonal co-transport of BRP and RBP using intravital live imaging, with both proteins co-accumulating in axonal aggregates of several transport mutants. RBP, via its C-terminal Src-homology 3 (SH3) domains, binds Aplip1/JIP1, a transport adaptor involved in kinesin-dependent SV transport. We show in atomic detail that RBP C-terminal SH3 domains bind a proline-rich (PxxP) motif of Aplip1/JIP1 with submicromolar affinity. Pointmutating this PxxP motif provoked formation of ectopic AZ-like structures at axonal membranes. Direct interactions between AZ proteins and transport adaptors seem to provide complex avidity and shield synaptic interaction surfaces of pre-assembled scaffold protein transport complexes, thus, favouring physiological synaptic AZ assembly over premature assembly at axonal membranes.


1994 ◽  
Vol 91 (10) ◽  
pp. 4135-4139 ◽  
Author(s):  
K. A. Reedquist ◽  
T. Fukazawa ◽  
B. Druker ◽  
G. Panchamoorthy ◽  
S. E. Shoelson ◽  
...  

1992 ◽  
Vol 67 (02) ◽  
pp. 252-257 ◽  
Author(s):  
Anne M Aakhus ◽  
J Michael Wilkinson ◽  
Nils Olav Solum

SummaryActin-binding protein (ABP) is degraded into fragments of 190 and 90 kDa by calpain. A monoclonal antibody (MAb TI10) against the 90 kDa fragment of ABP coprecipitated with the glycoprotein lb (GP lb) peak observed on crossed immunoelectrophoresis of Triton X-100 extracts of platelets prepared without calpain inhibitors. MAb PM6/317 against the 190 kDa fragment was not coprecipitated with the GP lb peak under such conditions. The 90 kDa fragment was adsorbed on protein A agarose from extracts that had been preincubated with antibodies to GP lb. This supports the idea that the GP Ib-ABP interaction resides in the 90 kDa region of ABP. GP lb was sedimented with the Triton-insoluble actin filaments in trace amounts only, and only after high speed centrifugation (100,000 × g, 3 h). Both the 190 kDa and the 90 kDa fragments of ABP were sedimented with the Triton-insoluble actin filaments.


Sign in / Sign up

Export Citation Format

Share Document