scholarly journals Activated Mutants of SHP-2 Preferentially Induce Elongation of Xenopus Animal Caps

2000 ◽  
Vol 20 (1) ◽  
pp. 299-311 ◽  
Author(s):  
Alana M. O'Reilly ◽  
Scott Pluskey ◽  
Steven E. Shoelson ◽  
Benjamin G. Neel

ABSTRACT In Xenopus ectodermal explants (animal caps), fibroblast growth factor (FGF) evokes two major events: induction of ventrolateral mesodermal tissues and elongation. TheXenopus FGF receptor (XFGFR) and certain downstream components of the XFGFR signal transduction pathway (e.g., members of the Ras/Raf/MEK/mitogen-activated protein kinase [MAPK] cascade) are required for both of these processes. Likewise, activated versions of these signaling components induce mesoderm and promote animal cap elongation. Previously, using a dominant negative mutant approach, we showed that the protein-tyrosine phosphatase SHP-2 is necessary for FGF-induced MAPK activation, mesoderm induction, and elongation of animal caps. Taking advantage of recent structural information, we now have generated novel, activated mutants of SHP-2. Here, we show that expression of these mutants induces animal cap elongation to an extent comparable to that evoked by FGF. Surprisingly, however, activated mutant-induced elongation can occur without mesodermal cytodifferentiation and is accompanied by minimal activation of the MAPK pathway and mesodermal marker expression. Our results implicate SHP-2 in a pathway(s) directing cell movements in vivo and identify potential downstream components of this pathway. Our activated mutants also may be useful for determining the specific functions of SHP-2 in other signaling systems.

Development ◽  
1996 ◽  
Vol 122 (10) ◽  
pp. 3173-3183 ◽  
Author(s):  
K.L. Kroll ◽  
E. Amaya

We have developed a simple approach for large-scale transgenesis in Xenopus laevis embryos and have used this method to identify in vivo requirements for FGF signaling during gastrulation. Plasmids are introduced into decondensed sperm nuclei in vitro using restriction enzyme-mediated integration (REMI). Transplantation of these nuclei into unfertilized eggs yields hundreds of normal, diploid embryos per day which develop to advanced stages and express integrated plasmids nonmosaically. Transgenic expression of a dominant negative mutant of the FGF receptor (XFD) after the mid-blastula stage uncouples mesoderm induction, which is normal, from maintenance of mesodermal markers, which is lost during gastrulation. By contrast, embryos expressing XFD contain well-patterned nervous systems despite a putative role for FGF in neural induction.


2007 ◽  
Vol 176 (5) ◽  
pp. 709-718 ◽  
Author(s):  
Chunxi Ge ◽  
Guozhi Xiao ◽  
Di Jiang ◽  
Renny T. Franceschi

The extracellular signal–regulated kinase (ERK)–mitogen-activated protein kinase (MAPK) pathway provides a major link between the cell surface and nucleus to control proliferation and differentiation. However, its in vivo role in skeletal development is unknown. A transgenic approach was used to establish a role for this pathway in bone. MAPK stimulation achieved by selective expression of constitutively active MAPK/ERK1 (MEK-SP) in osteoblasts accelerated in vitro differentiation of calvarial cells, as well as in vivo bone development, whereas dominant-negative MEK1 was inhibitory. The involvement of the RUNX2 transcription factor in this response was established in two ways: (a) RUNX2 phosphorylation and transcriptional activity were elevated in calvarial osteoblasts from TgMek-sp mice and reduced in cells from TgMek-dn mice, and (b) crossing TgMek-sp mice with Runx2+/− animals partially rescued the hypomorphic clavicles and undemineralized calvaria associated with Runx2 haploinsufficiency, whereas TgMek-dn; Runx2+/− mice had a more severe skeletal phenotype. This work establishes an important in vivo function for the ERK–MAPK pathway in bone that involves stimulation of RUNX2 phosphorylation and transcriptional activity.


2001 ◽  
Vol 281 (2) ◽  
pp. L435-L449 ◽  
Author(s):  
Viswanathan Natarajan ◽  
William M. Scribner ◽  
Andrew J. Morris ◽  
Shukla Roy ◽  
Suryanarayana Vepa ◽  
...  

We previously demonstrated that diperoxovanadate (DPV), a synthetic peroxovanadium compound and cell-permeable oxidant that acts as a protein tyrosine phosphatase inhibitor and insulinomimetic, increased phospholipase D (PLD) activation in endothelial cells (ECs). In this report, the regulation of DPV-induced PLD activation by mitogen-activated protein kinases (MAPKs) was investigated. DPV activated extracellular signal-regulated kinase, c-Jun NH2-terminal kinase (JNK), and p38 MAPK in a dose- and time-dependent fashion. Treatment of ECs with p38 MAPK inhibitors SB-203580 and SB-202190 or transient transfection with a p38 dominant negative mutant mitigated the PLD activation by DPV but not by phorbol ester. SB-202190 blocked DPV-mediated p38 MAPK activity as determined by activated transcription factor-2 phosphorylation. Immunoprecipitation of PLD from EC lysates with PLD1 and PLD2 antibodies revealed both PLD isoforms associated with p38 MAPK. Similarly, PLD1 and PLD2 were detected in p38 immunoprecipitates from control and DPV-challenged ECs. Binding assays demonstrated interaction of glutathione S-transferase-p38 fusion protein with PLD1 and PLD2. Both PLD1 and PLD2 were phosphorylated by p38 MAPK in vitro, and DPV increased phosphorylation of PLD1 and PLD2 in vivo. However, phosphorylation of PLD by p38 failed to affect PLD activity in vitro. These results provide evidence for p38 MAPK-mediated regulation of PLD in ECs.


1995 ◽  
Vol 6 (12) ◽  
pp. 1685-1695 ◽  
Author(s):  
A M Pace ◽  
M Faure ◽  
H R Bourne

The Gi class of heterotrimeric G proteins has been implicated in transmitting mitogenic signals from a variety of seven-transmembrane domain receptors. In addition, the alpha subunit of Gi2 (alpha i2) is oncogenic when mutated to a constitutively active form (gip2). The mechanism by which Gi2 stimulates cellular proliferation is unknown, but is believed to involve activation of the mitogen-activated protein kinase (MAPK) signaling cascade. To study Gi2 activation of the cascade, we transiently expressed a mutant, pertussis toxin (PTX)-resistant alpha i2 in Chinese hamster ovary cells. After PTX treatment of these cells, Gi-coupled receptors specifically activated PTX-resistant Gi2 without activating other Gi proteins. Receptor-mediated activation of Gi2 led to activation of MAPK and its upstream activator, MAPK/ERK-activating kinase (MEK). Activation of MAPK and MEK by Gi2 was blocked by expression of a dominant-negative mutant of Ras. Gi2 activation did not, however, detectably increase the proportion of Ras protein in the GTP-bound form. Additional experiments suggest that Gi2 stimulates the MAPK pathway, at least in part, by mechanisms that involve release of its beta gamma subunit, as well as activation of phosphatidylinositol-3 kinase.


1995 ◽  
Vol 15 (3) ◽  
pp. 1318-1323 ◽  
Author(s):  
L Han ◽  
J Colicelli

The overexpression of some human proteins can cause interference with the Ras signal transduction pathway in the yeast Saccharomyces cerevisiae. The functional block is located at the level of the effector itself, since these proteins do not suppress activating mutations further downstream in the same pathway. We now demonstrate, with in vivo and in vitro experiments, that the protein encoded by one human cDNA (clone 99) can interact directly with yeast Ras2p and with human H-Ras protein, and we have named this gene rin1 (Ras interaction/interference). The interaction between Ras and Rin1 is enhanced when Ras is bound to GTP. Rin1 is not able to interact with either an effector mutant or a dominant negative mutant of H-Ras. Thus, Rin1 displays a human H-Ras interaction profile that is the same as that seen for Raf1 and yeast adenylyl cyclase, two known effectors of Ras. Moreover, Raf1 directly competes with Rin1 for binding to H-Ras in vitro. Unlike Raf1, however, the Rin1 protein resides primarily at the plasma membrane, where H-Ras is localized. These data are consistent with Rin1 functioning in mammalian cells as an effector or regulator of H-Ras.


Development ◽  
2001 ◽  
Vol 128 (12) ◽  
pp. 2175-2186 ◽  
Author(s):  
Maximilian Fürthauer ◽  
Frank Reifers ◽  
Michael Brand ◽  
Bernard Thisse ◽  
Christine Thisse

In looking for novel factors involved in the regulation of the fibroblast growth factor (FGF) signaling pathway, we have isolated a zebrafish sprouty4 gene, based on its extensive similarities with the expression patterns of both fgf8 and fgf3. Through gain- and loss-of-function experiments, we demonstrate that Fgf8 and Fgf3 act in vivo to induce the expression of Spry4, which in turn can inhibit activity of these growth factors. When overexpressed at low doses, Spry4 induces loss of cerebellum and reduction in size of the otic vesicle, thereby mimicking the fgf8/acerebellar mutant phenotype. Injections of high doses of Spry4 cause ventralization of the embryo, an opposite phenotype to the dorsalisation induced by overexpression of Fgf8 or Fgf3. Conversely we have shown that inhibition of Spry4 function through injection of antisense morpholino oligonucleotide leads to a weak dorsalization of the embryo, the phenotype expected for an upregulation of Fgf8 or Fgf3 signaling pathway. Finally, we show that Spry4 interferes with FGF signaling downstream of the FGF receptor 1 (FGFR1). In addition, our analysis reveals that signaling through FGFR1/Ras/mitogen-activated protein kinase pathway is involved, not in mesoderm induction, but in the control of the dorsoventral patterning via the regulation of bone morphogenetic protein (BMP) expression.


2005 ◽  
Vol 25 (2) ◽  
pp. 819-829 ◽  
Author(s):  
Sandra Galic ◽  
Christine Hauser ◽  
Barbara B. Kahn ◽  
Fawaz G. Haj ◽  
Benjamin G. Neel ◽  
...  

ABSTRACT The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling and a therapeutic target for type 2 diabetes. Our previous studies have shown that the closely related tyrosine phosphatase TCPTP might also contribute to the regulation of insulin receptor (IR) signaling in vivo (S. Galic, M. Klingler-Hoffmann, M. T. Fodero-Tavoletti, M. A. Puryer, T. C. Meng, N. K. Tonks, and T. Tiganis, Mol. Cell. Biol. 23:2096-2108, 2003). Here we show that PTP1B and TCPTP function in a coordinated and temporally distinct manner to achieve an overall regulation of IR phosphorylation and signaling. Whereas insulin-induced phosphatidylinositol 3-kinase/Akt signaling was prolonged in both TCPTP−/− and PTP1B−/− immortalized mouse embryo fibroblasts (MEFs), mitogen-activated protein kinase ERK1/2 signaling was elevated only in PTP1B-null MEFs. By using phosphorylation-specific antibodies, we demonstrate that both IR β-subunit Y1162/Y1163 and Y972 phosphorylation are elevated in PTP1B−/− MEFs, whereas Y972 phosphorylation was elevated and Y1162/Y1163 phosphorylation was sustained in TCPTP−/− MEFs, indicating that PTP1B and TCPTP differentially contribute to the regulation of IR phosphorylation and signaling. Consistent with this, suppression of TCPTP protein levels by RNA interference in PTP1B−/− MEFs resulted in no change in ERK1/2 signaling but caused prolonged Akt activation and Y1162/Y1163 phosphorylation. These results demonstrate that PTP1B and TCPTP are not redundant in insulin signaling and that they act to control both common as well as distinct insulin signaling pathways in the same cell.


2002 ◽  
Vol 365 (1) ◽  
pp. 133-145 ◽  
Author(s):  
Nadine CHOUINARD ◽  
Kristoffer VALERIE ◽  
Mahmoud ROUABHIA ◽  
Jacques HUOT

Human keratinocytes respond to UV rays by developing a fast adaptive response that contributes to maintaining their functions and survival. We investigated the role of the mitogen-activated protein kinase pathways in transducing the UV signals in normal human keratinocytes. We found that UVA, UVB or UVC induced a marked and persistent activation of p38, whereas c-Jun N-terminal kinase or extracellular signal-regulated kinase were less or not activated respectively. Inhibition of p38 activity by expression of a dominant-negative mutant of p38 or with SB203580 impaired cell viability and led to an increase in UVB-induced apoptosis. This sensitization to apoptosis was independent of caspase activities. Inhibition of p38 did not sensitize transformed HaCaT keratinocytes to UVB-induced apoptosis. In normal keratinocytes, expression of a dominant-negative mutant of p53 increased UVB-induced cell death, pointing to a role for p53. In these cells, UVB triggered a p38-dependent phosphorylation of p53 on Ser-15. This phosphorylation was associated with an SB203580-sensitive accumulation of p53, even in the presence of a serine phosphatase inhibitor. Accumulated p53 was localized mainly in the cytoplasm, independently of CRM1 nuclear export. In HaCaT cells, p53 was localized exclusively in the nucleus and its distribution and level were not affected by UVB or p38 inhibition. However, UVB induced an SB203580-insensitive phosphorylation on Ser-15 of mutated p53. Overall, our results suggest that, in normal human keratinocytes, protection against UVB depends on p38-mediated phosphorylation and stabilization of p53 and is tightly associated with the cytoplasmic sequestration of wild-type p53. We conclude that the p38/p53 pathway plays a key role in the adaptive response of normal human keratinocytes against UV stress.


2001 ◽  
Vol 114 (8) ◽  
pp. 1579-1589 ◽  
Author(s):  
M. Reyes-Reyes ◽  
N. Mora ◽  
A. Zentella ◽  
C. Rosales

Integrin-mediated signals play an important but poorly understood role in regulating many leukocyte functions. In monocytes and monocytic leukemia cells, (β)1 integrin-mediated adhesion results in a strong induction of immediate-early genes that are important in inflammation. To investigate the signaling pathways from integrins in monocytic cells, THP-1 cells were stimulated via (β)1 integrins by binding to fibronectin and by crosslinking the integrins with specific monoclonal antibodies. The involvement of MAPK and PI 3-K on nuclear factor (κ)B (NF-(κ)B) activation was then analyzed. We found that integrins activated both NF-(κ)B and MAPK in a PI 3-K-dependent manner, as wortmannin and LY294002 blocked these responses. However, the specific MEK inhibitor PD98059 did not prevent integrin-mediated NF-(κ)B activation. In contrast, a dominant negative mutant of Rac completely prevented NF-(κ)B activation, but it did not affect MAPK activation. These results indicate that integrin signaling to NF-(κ)B is not mediated by the MAPK pathway, but rather by the small GTPase Rac. In addition, a dominant negative form of Ρ augmented NF-(κ)B activation and blocked MAPK activation, implying that these two pathways are in competition with each other. These data suggest that integrins activate different signaling pathways in monocytic cells. One uses PI 3-K and Rac to activate NF-(κ)B, while the other uses PI 3-K, MEK, and MAPK to activate other nuclear factors, such as Elk-1.


2000 ◽  
Vol 20 (5) ◽  
pp. 1571-1582 ◽  
Author(s):  
Shrikesh Sachdev ◽  
Sriparna Bagchi ◽  
Donna D. Zhang ◽  
Angela C. Mings ◽  
Mark Hannink

ABSTRACT The inhibitor of kappa B alpha (IκBα) protein is able to shuttle between the cytoplasm and the nucleus. We have utilized a combination of in vivo and in vitro approaches to provide mechanistic insight into nucleocytoplasmic shuttling by IκBα. IκBα contains multiple functional domains that contribute to shuttling of IκBα between the cytoplasm and the nucleus. Nuclear import of IκBα is mediated by the central ankyrin repeat domain. Similar to previously described nuclear import pathways, nuclear import of IκBα is temperature and ATP dependent and is blocked by a dominant-negative mutant of importin β. However, in contrast to classical nuclear import pathways, nuclear import of IκBα is independent of soluble cytosolic factors and is not blocked by the dominant-negative RanQ69L protein. Nuclear export of IκBα is mediated by an N-terminal nuclear export sequence. Nuclear export of IκBα requires the CRM1 nuclear export receptor and is blocked by the dominant-negative RanQ69L protein. Our results are consistent with a model in which nuclear import of IκBα is mediated through direct interactions with components of the nuclear pore complex, while nuclear export of IκBα is mediated via a CRM1-dependent pathway.


Sign in / Sign up

Export Citation Format

Share Document