Transgenic Xenopus embryos from sperm nuclear transplantations reveal FGF signaling requirements during gastrulation

Development ◽  
1996 ◽  
Vol 122 (10) ◽  
pp. 3173-3183 ◽  
Author(s):  
K.L. Kroll ◽  
E. Amaya

We have developed a simple approach for large-scale transgenesis in Xenopus laevis embryos and have used this method to identify in vivo requirements for FGF signaling during gastrulation. Plasmids are introduced into decondensed sperm nuclei in vitro using restriction enzyme-mediated integration (REMI). Transplantation of these nuclei into unfertilized eggs yields hundreds of normal, diploid embryos per day which develop to advanced stages and express integrated plasmids nonmosaically. Transgenic expression of a dominant negative mutant of the FGF receptor (XFD) after the mid-blastula stage uncouples mesoderm induction, which is normal, from maintenance of mesodermal markers, which is lost during gastrulation. By contrast, embryos expressing XFD contain well-patterned nervous systems despite a putative role for FGF in neural induction.

2000 ◽  
Vol 20 (1) ◽  
pp. 299-311 ◽  
Author(s):  
Alana M. O'Reilly ◽  
Scott Pluskey ◽  
Steven E. Shoelson ◽  
Benjamin G. Neel

ABSTRACT In Xenopus ectodermal explants (animal caps), fibroblast growth factor (FGF) evokes two major events: induction of ventrolateral mesodermal tissues and elongation. TheXenopus FGF receptor (XFGFR) and certain downstream components of the XFGFR signal transduction pathway (e.g., members of the Ras/Raf/MEK/mitogen-activated protein kinase [MAPK] cascade) are required for both of these processes. Likewise, activated versions of these signaling components induce mesoderm and promote animal cap elongation. Previously, using a dominant negative mutant approach, we showed that the protein-tyrosine phosphatase SHP-2 is necessary for FGF-induced MAPK activation, mesoderm induction, and elongation of animal caps. Taking advantage of recent structural information, we now have generated novel, activated mutants of SHP-2. Here, we show that expression of these mutants induces animal cap elongation to an extent comparable to that evoked by FGF. Surprisingly, however, activated mutant-induced elongation can occur without mesodermal cytodifferentiation and is accompanied by minimal activation of the MAPK pathway and mesodermal marker expression. Our results implicate SHP-2 in a pathway(s) directing cell movements in vivo and identify potential downstream components of this pathway. Our activated mutants also may be useful for determining the specific functions of SHP-2 in other signaling systems.


2000 ◽  
Vol 20 (5) ◽  
pp. 1571-1582 ◽  
Author(s):  
Shrikesh Sachdev ◽  
Sriparna Bagchi ◽  
Donna D. Zhang ◽  
Angela C. Mings ◽  
Mark Hannink

ABSTRACT The inhibitor of kappa B alpha (IκBα) protein is able to shuttle between the cytoplasm and the nucleus. We have utilized a combination of in vivo and in vitro approaches to provide mechanistic insight into nucleocytoplasmic shuttling by IκBα. IκBα contains multiple functional domains that contribute to shuttling of IκBα between the cytoplasm and the nucleus. Nuclear import of IκBα is mediated by the central ankyrin repeat domain. Similar to previously described nuclear import pathways, nuclear import of IκBα is temperature and ATP dependent and is blocked by a dominant-negative mutant of importin β. However, in contrast to classical nuclear import pathways, nuclear import of IκBα is independent of soluble cytosolic factors and is not blocked by the dominant-negative RanQ69L protein. Nuclear export of IκBα is mediated by an N-terminal nuclear export sequence. Nuclear export of IκBα requires the CRM1 nuclear export receptor and is blocked by the dominant-negative RanQ69L protein. Our results are consistent with a model in which nuclear import of IκBα is mediated through direct interactions with components of the nuclear pore complex, while nuclear export of IκBα is mediated via a CRM1-dependent pathway.


2004 ◽  
Vol 24 (15) ◽  
pp. 6861-6870 ◽  
Author(s):  
Mauro Costa-Mattioli ◽  
Yuri Svitkin ◽  
Nahum Sonenberg

ABSTRACT Translation of poliovirus and hepatitis C virus (HCV) RNAs is initiated by recruitment of 40S ribosomes to an internal ribosome entry site (IRES) in the mRNA 5′ untranslated region. Translation initiation of these RNAs is stimulated by noncanonical initiation factors called IRES trans-activating factors (ITAFs). The La autoantigen is such an ITAF, but functional evidence for the role of La in poliovirus and HCV translation in vivo is lacking. Here, by two methods using small interfering RNA and a dominant-negative mutant of La, we demonstrate that depletion of La causes a dramatic reduction in poliovirus IRES function in vivo. We also show that 40S ribosomal subunit binding to HCV and poliovirus IRESs in vitro is inhibited by a dominant-negative form of La. These results provide strong evidence for a function of the La autoantigen in IRES-dependent translation and define the step of translation which is stimulated by La.


Development ◽  
1994 ◽  
Vol 120 (2) ◽  
pp. 453-462 ◽  
Author(s):  
R.A. Cornell ◽  
D. Kimelman

The early patterning of mesoderm in the Xenopus embryo requires signals from several intercellular factors, including mesoderm-inducing agents that belong to the fibroblast growth factor (FGF) and TGF-beta families. In animal hemisphere explants (animal caps), basic FGF and the TGF-beta family member activin are capable of converting pre-ectodermal cells to a mesodermal fate, although activin is much more effective at inducing dorsal and anterior mesoderm than is basic FGF. Using a dominant-negative form of the Xenopus type 1 FGF receptor, we show that an FGF signal is required for the full induction of mesoderm by activin. Animal caps isolated from embryos that have been injected with the truncated FGF receptor and cultured with activin do not extend and the induction of some genes, including cardiac actin and Xbra, is greatly diminished, while the induction of other genes, including the head organizer-specific genes gsc and Xlim-1, is less sensitive. These results are consistent with the phenotype of the truncated FGF receptor-injected embryo and imply that the activin induction of mesoderm depends on FGF, with some genes requiring a higher level of FGF signaling than others.


2000 ◽  
Vol 20 (24) ◽  
pp. 9294-9306 ◽  
Author(s):  
Swati Gupta ◽  
Rina Plattner ◽  
Channing J. Der ◽  
Eric J. Stanbridge

ABSTRACT Activation of multiple signaling pathways is required to trigger the full spectrum of in vitro and in vivo phenotypic traits associated with neoplastic transformation by oncogenic Ras. To determine which of these pathways are important for N-ras tumorigenesis in human cancer cells and also to investigate the possibility of cross talk among the pathways, we have utilized a human fibrosarcoma cell line (HT1080), which contains an endogenous mutated allele of the N-rasgene, and its derivative (MCH603c8), which lacks the mutant N-ras allele. We have stably transfected MCH603c8 and HT1080 cells with activating or dominant-negative mutant cDNAs, respectively, of various components of the Raf, Rac, and RhoA pathways. In previous studies with these cell lines we showed that loss of mutant Ras function results in dramatic changes in the in vitro phenotypic traits and conversion to a weakly tumorigenic phenotype in vivo. We report here that only overexpression of activated MEK contributed significantly to the conversion of MCH603c8 cells to an aggressive tumorigenic phenotype. Furthermore, we have demonstrated that blocking the constitutive activation of the Raf-MEK, Rac, or RhoA pathway alone is not sufficient to block the aggressive tumorigenic phenotype of HT1080, despite affecting a number of in vitro-transformed phenotypic traits. We have also demonstrated the possibility of bidirectional cross talk between the Raf-MEK-ERK pathway and the Rac-JNK or RhoA pathway. Finally, overexpression of activated MEK in MCH603c8 cells appears to result in the activation of an as-yet-unidentified target(s) that is critical for the aggressive tumorigenic phenotype.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2067-2067
Author(s):  
Ryoichi Ono ◽  
Hidetoshi Kumgai ◽  
Hideaki Nakajima ◽  
Yukio Tonozuka ◽  
Ai Hishiya ◽  
...  

Abstract MLL (mixed lineage leukemia)-fusion-mediated acute leukemia in infants has frequently been found to have FLT3 overexpression or tyrosine kinase domain (TKD) mutation. We have recently developed both in vitro and in vivo leukemogenesis models where MLL fusion proteins cooperate with another FLT3 mutant, internal tandem duplication (ITD). However, little has been clear about molecular mechanism of the cooperativity between MLL fusion protein and FLT3 mutants, not only FLT3-ITD but also FLT3-TKD. The present study demonstrates that MLL-SEPT6 fusion protein associated with infantile acute leukemia cooperates in vitro with FLT3-TKD mainly through activated MAP kinase pathway, while MLL-SEPT6 cooperates with FLT3-ITD mainly through activated STAT5 pathway. We first found that the interleukin (IL) -3 dependent murine hematopoietic cell line immortalized by MLL-SEPT6, named HF6, was transformed to grow without IL-3 by forced expression of FLT3 mutants which activated MAP kinase and STAT5, as shown in IL-3 dependent murine pro-B Ba/F3 cells. A dominant negative mutant of STAT5A suppressed the proliferation of the HF6 cells transformed by FLT3-ITD more effectively than that by FLT3-TKD, similarly to the transformed Ba/F3 cells. However, unlike the transformed Ba/F3 cells, the proliferation of transformed HF6 cells was suppressed with an MEK inhibitor more effectively in the HF6 cells transformed by FLT3-TKD than by FLT3-ITD. These results suggested that, in the transformation of HF6 cells, MAP kinase activation is more critical for FLT3-TKD than STAT5, while STAT5 activation is more critical for FLT3-ITD than MAP kinase. Furthermore, HF6 cells became IL-3 independent by direct activation of Raf-MAP kinase, while Ba/F3 cells did not. In contrast, a constitutively active mutant of STAT5 enabled, not HF6, but Ba/F3 cells to grow without IL-3, thus suggesting the essential role of activation of the Raf-MAP kinase cascade in the growth of the cells expressing MLL fusion protein. We next examined the oncogenic potential of MLL-SEPT6 and either of the FLT3 mutants by leukemogenesis assays in vivo using bone marrow transplantation. Interestingly, FLT3-TKD cooperated with MLL-SEPT6 in vivo to induce acute leukemia in mice rapidly (26±5.5 days), similarly to FLT3-ITD (27±5.1 days), although the individual oncogenic potential of FLT3-TKD leading to T-cell lymphoma (119±11 days), was much weaker than that of FLT3-ITD leading to myeloproliferative disease (56±16 days). Taken together, these results suggest that MLL fusion protein can induce human acute leukemia in concert with MAP kinase activation through secondary genetic events including FLT3-TKD mutation or other mechanisms which activate MAP kinase.


2002 ◽  
Vol 22 (22) ◽  
pp. 8088-8099 ◽  
Author(s):  
Xianming Mo ◽  
William S. Dynan

ABSTRACT Ku is an abundant nuclear protein with an essential function in the repair of DNA double-strand breaks. Various observations suggest that Ku also interacts with the cellular transcription machinery, although the mechanism and significance of this interaction are not well understood. In the present study, we investigated the subnuclear distribution of Ku in normally growing human cells by using confocal microscopy, chromatin immunoprecipitation, and protein immunoprecipitation. All three approaches indicated association of Ku with RNA polymerase II (RNAP II) elongation sites. This association occurred independently of the DNA-dependent protein kinase catalytic subunit and was highly selective. There was no detectable association with the initiating isoform of RNAP II or with the general transcription initiation factors. In vitro protein-protein interaction assays demonstrated that the association of Ku with elongation proteins is mediated, in part, by a discrete C-terminal domain in the Ku80 subunit. Functional disruption of this interaction with a dominant-negative mutant inhibited transcription in vitro and in vivo and suppressed cell growth. These results suggest that association of Ku with transcription sites is important for maintenance of global transcription levels. Tethering of double-strand break repair proteins to defined subnuclear structures may also be advantageous in maintenance of genome stability.


2001 ◽  
Vol 281 (2) ◽  
pp. L435-L449 ◽  
Author(s):  
Viswanathan Natarajan ◽  
William M. Scribner ◽  
Andrew J. Morris ◽  
Shukla Roy ◽  
Suryanarayana Vepa ◽  
...  

We previously demonstrated that diperoxovanadate (DPV), a synthetic peroxovanadium compound and cell-permeable oxidant that acts as a protein tyrosine phosphatase inhibitor and insulinomimetic, increased phospholipase D (PLD) activation in endothelial cells (ECs). In this report, the regulation of DPV-induced PLD activation by mitogen-activated protein kinases (MAPKs) was investigated. DPV activated extracellular signal-regulated kinase, c-Jun NH2-terminal kinase (JNK), and p38 MAPK in a dose- and time-dependent fashion. Treatment of ECs with p38 MAPK inhibitors SB-203580 and SB-202190 or transient transfection with a p38 dominant negative mutant mitigated the PLD activation by DPV but not by phorbol ester. SB-202190 blocked DPV-mediated p38 MAPK activity as determined by activated transcription factor-2 phosphorylation. Immunoprecipitation of PLD from EC lysates with PLD1 and PLD2 antibodies revealed both PLD isoforms associated with p38 MAPK. Similarly, PLD1 and PLD2 were detected in p38 immunoprecipitates from control and DPV-challenged ECs. Binding assays demonstrated interaction of glutathione S-transferase-p38 fusion protein with PLD1 and PLD2. Both PLD1 and PLD2 were phosphorylated by p38 MAPK in vitro, and DPV increased phosphorylation of PLD1 and PLD2 in vivo. However, phosphorylation of PLD by p38 failed to affect PLD activity in vitro. These results provide evidence for p38 MAPK-mediated regulation of PLD in ECs.


2005 ◽  
Vol 79 (1) ◽  
pp. 486-494 ◽  
Author(s):  
Brigitte Rupp ◽  
Zsolt Ruzsics ◽  
Torsten Sacher ◽  
Ulrich H. Koszinowski

ABSTRACT We have established a conditional gene expression system for cytomegalovirus which allows regulation of genes independently from the viral replication program. Due to the combination of all elements required for regulated expression in the same viral genome, conditional viruses can be studied in different cell lines in vitro and in the natural host in vivo. The combination of a self-sufficient tetracycline-regulated expression cassette and Flp recombinase-mediated insertion into the viral genome allowed fast construction of recombinant murine cytomegaloviruses carrying different conditional genes. The regulation of two reporter genes, the essential viral M50 gene and a dominant-negative mutant gene (m48.2) encoding the small capsid protein, was analyzed in more detail. In vitro, viral growth was regulated by the conditional expression of M50 by 3 orders of magnitude and up to a millionfold when the dominant-negative small capsid protein mutant was used. In vivo, viral growth of the dominant-negative mutant was reduced to detection limits in response to the presence of doxycycline in the organs of mice. We believe that this conditional expression system is applicable to genetic studies of large DNA viruses in general.


Sign in / Sign up

Export Citation Format

Share Document